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Abstract: 

Failure to properly specify an agent's choice set in discrete choice models will generate biased parameter 
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model agent behavior when choice alternatives are unknown to the researcher, potentially infinite, and 

differ according to spatial and temporal factors. Using Monte Carlo analysis we compare the performance 

of this point-based sampling method to the commonly used approach of spatially aggregating choice 

alternatives. We then apply these alternative approaches to modelling location choice in the Pacific 

groundfish trawl fishery which has a complex spatial choice structure. Both the Monte Carlo and 

application results provide considerable support for the efficacy of the point-based approaches. 
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Abstract 

Failure to properly specify an agent's choice set in discrete choice models will generate biased parameter 

estimates resulting in inaccurate behavioral predictions as well as biased estimates of policy relevant 

metrics. We propose a method of constructing choice sets by sampling from specific points in space to 

model agent behavior when choice alternatives are unknown to the researcher, potentially infinite, and 

differ according to spatial and temporal factors. Using Monte Carlo analysis we compare the performance 

of this point-based sampling method to the commonly used approach of spatially aggregating choice 

alternatives. We then apply these alternative approaches to modelling location choice in the Pacific 

groundfish trawl fishery which has a complex spatial choice structure. Both the Monte Carlo and 

application results provide considerable support for the efficacy of the point-based approaches. 

 

Highlights 

• Grid-point model has less bias in expected revenue coefficients in most cases 

• Our empirical application showed higher predictive accuracy for grid-point models  

• A variety of factors can influence the absolute and relative performance of the models 
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1. Introduction 

A central component of any discrete choice analysis is the selection of alternatives that determine a 

decision agent's consideration set. To date, research surrounding consideration sets in discrete choice 

frameworks assumes that the researcher can observe, or reasonably approximate, the complete set of 

choice alternatives. The decision-maker's problem is then to choose the optimal choice alternative in the 

context of costly information gathering for site attributes. The vast majority of research on choice set 

definition begins with the problem of paring down the complete choice set to a subset of alternatives 

pertinent to a given choice occasion. This paring down process is justified by assuming that individuals 

don't have the time or resources to learn about the full choice set. Numerous studies have found that a 

failure to properly specify an agent's consideration set will generate biased parameter estimates leading to 

inaccurate behavioral predictions and policy metrics (e.g. welfare measures or elasticities) (Feather 1994; 

Haab and Hicks 1997; Hicks and Strand 2000; Hicks and Schnier 2010; Parsons and Hauber 1998; 

Parsons et a. 2000). This has prompted researchers to delve deeper into the cognitive processes that 

generate one's consideration set (Roberts and Negundani 1995; Shocker et al. 1991).   

In discrete choice environments where choices are made repeatedly, and where technology is 

available for storing time series data at precise spatial scales, it is likely that the decision-makers 

effectively considered all possibilities.  For these types of problems, we contend the predominant issue 

confronting the researcher isn't paring down the full set of available choice alternatives but defining what 

constitutes a choice alternative and what comprises the choice set.   The development of an alternative, 

more behaviorally realistic, consideration set formulation process is integral to our ability to predict agent 

behavior and inform public policy.  We propose a method of constructing choice sets by sampling from a 

set of specific points in space that can be used to model agent behavior when potential choice alternatives 

are effectively infinite and must be defined over a specified spatial and temporal region. 

Commercial fishing is an activity in which agents make complex spatial choices in data rich 

environments. Commercial fishermen make dozens if not hundreds of such repeated choices each year, 

have onboard geographic information systems for collecting, analyzing and storing data, and collect 

information such as bathymetry, past locations fished, harvests, locations of other vessels fishing, current 

weather and water temperature, and average weather and currents. Researchers observe the vessel 

choosing a point over a very large open ocean area. Most applications of spatial discrete choice models on 

such data have completely ignored the rich spatial data available and have rather crudely aggregated sites 

using convenient latitude/longitude grids or large discrete areas defined for management purposes. This is 

often done because it isn't at all clear what the correct spatial scale should be or fine-scale location choice 

data is not available. However, these areas may encompass highly heterogeneous fishing locations in 
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terms of species composition and density or feasibility of fishing (e.g. unfishable rocky areas). While 

computational capabilities now allow researchers to specify larger choices sets comprised of smaller 

discrete areas it may still not be possible to capture the fine scale heterogeneity that determines species 

distributions (and co-distributions) in many fisheries when choice alternatives are arbitrarily spatially 

distributed. 

While our application focuses on a fishery, there are other applications where choices are made at 

a fine scale and fine scale data on attributes are likely to be available and drive decisions. Consider for 

example retail store location siting or the siting of mines or wells.  For these cases, decision-makers have 

incentives to fully understand the choice set, characterize its extent and spatial variability and make 

decisions using this detailed data. They are likely to collect or have access to large amounts of spatially 

refined data on factors that might influence the relative utility of different choices.  Researchers would see 

only the location chosen and often characterize these choices over arbitrarily defined zones or 

jurisdictional boundaries, but true choices may reflect finer scale attribute data. Similarly, the choice of 

what house to buy is likely to be affected by the attributes of the house itself (e.g., square feet, number of 

bathrooms, etc.) and of neighborhood characteristics but probably also the characteristics of the houses 

nearby, particularly neighboring houses.  

To better characterize choice alternatives and consideration sets, we consider an approach that 

samples points from a fine scale grid of specific locations which in totality may consist of thousands of 

locations. Sampling of these locations following McFadden (1978) and Parsons and Kealy (1992) can 

make computation tractable when the choice set gets very large without undermining the ability to 

identify parameters with relatively modest sample sizes (von Haefen and Domanski). The site attributes at 

each point are based on observations of choices within a specified time and distance of the choice 

alternative rather than simply observations that fall in a pre-specified discrete area which may not 

accurately describe conditions in that specific location. For example, if a potential choice location occurs 

near the corner of an arbitrarily defined discrete area, commonly used approaches will base expected 

utility on past realizations within that discrete area without regard to their proximity to the specific 

location choice1. In contrast our point-based approach would limit information informing the expected 

utility of the choice alternative to other choice realizations near that location, including information from 

what might have been in an adjoining arbitrarily defined area had traditional aggregate areas been used. 

                                                           
1 The common approach  in  the  commercial  fisheries  literature  is  either  to  be  blessed with a fishery where a 
discrete set  of  points  are  fished  or  these  points  naturally  occur  in  groups one  might  consider  a  site  (e.g.  
Smith  2002)  or  to  arbitrarily  divide  fishing  areas  into grids  (e.g.    Hicks  and  Schnier  2008,   2010;   Hicks,   
Kirkley,   and  Strand  2004;   and  Miastean and Strand  1998). In some cases aggregation is determined by the data, 
.e.g. if only management areas are recorded for locations (e.g. Holland and Sutinen 2000). 
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The point-based method is likely to be advantageous when the resource is very patchy relative to more 

coarsely defined discrete areas. The advantage of our method relative to traditional approaches is likely to 

diminish as the scale of the traditionally defined discrete areas becomes finer or to the degree the 

traditional area boundaries can accurately map out the choice delineations that the agents consider 

(assuming the delineations are consistent across agents). As the surface of the characteristics that 

determine utility become smoother (e.g. density of a resource changes linearly over space rather than 

changing erratically within the bounds of the discrete areas) the difference between the methods should 

also diminish. If the analyst or the agents lack information on choice characteristics at a fine scale the 

point-based model is unlikely to offer a substantial advantage over a traditional discrete area method. 

Using Monte Carlo (MC) analysis we compare the performance of this point-based sampling 

method to a commonly used method that aggregates potential choice locations into pre-defined discrete 

areas and thus simplifies, but potentially misspecifies, the geo-spatial complexity of an agent's choice set 

to facilitate estimation. Our results indicate that our proposed point-based choice set model performs well 

in comparison to a more traditional approach with discrete areas and has the potential to improve spatial 

discrete choice modeling in settings with fine-scale spatial heterogeneity. To illustrate the advantages of 

our proposed model we apply it to the Pacific groundfish trawl fishery, which is characterized by a 

complex spatial choice structure.  

In the following section we contextualize our model in the existing discrete choice literature. In 

section three we outline the proposed model and its similarity and differences with traditional discrete 

choice models.  Section four presents our MC analysis where we compare our proposed point-based 

sampling model to a traditional random utility model (RUM) that aggregates spatial choices within 

discrete areas. Section five presents the results from our application of the model in the context of the 

Pacific groundfish trawl fishery. The final section contains general conclusions. 

2. Literature Review 

To better understand the cognitive process that generates the choice set it is convenient to frame the 

activity as a two-step process (Manski 1977).  In the first stage one forms their choice set, often times 

referred to as a consideration set, from the set of all potential alternatives available.  In the second stage 

one looks at all the alternatives that are contained in their parsed down choice set and selects the 

alternative that maximizes their utility.  The later step follows the random utility model (RUM) 

(McFadden 1978). A central issue in applied work is the assumptions made about how agents conduct the 

first stage of the decision process. Often times this stage is conveniently ignored, but a number of 

researchers have endeavored to address this issue within the literature.  
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The predominant methods used to reduce or restrict the choice set of agents have been site 

aggregation (Feather 1994; Parsons and Needelman 1992; Parsons et al. 2000), familiarity-based 

restrictions (Peters et al. 1995; Parsons et al. 1999; Hicks and Strand 2000), distance-based measures 

(Parsons and Hauber 1998; Whitehead and Haab 1999) and time-based restrictions (Banzhaf and Smith 

2007), or endogenous choice set formulation (Manski 1977; Swait and Ben-Akiva 1987a, 1987b; 

Andrews and Srinivasan 1995; Roberts and Lattin 1991; Bronnenberg and Vanhonacker 1996; Desarbo 

and Jedidi 1995; Swait 2001b; Basar and Bhat 2004; Haab and Hicks 1997; and Hicks and Schnier 2010). 

It is important to note two things about these approaches.  First, these papers argue that the issue of 

properly defined consideration sets is a necessary step in obtaining consistent parameter estimates; and 

second, the consideration set formulation process happens because information gathering for alternative 

specific attributes is costly for agents. 

The process of site aggregation is motivated by the need to reduce the choice set to a tractable 

number of alternatives. However, Parsons and Needelman (1992) illustrated that site aggregation may 

generate biased welfare estimates with the bias increasing as one further aggregates sites.  The bias arises 

because as one aggregates sites we do not account for the degree of heterogeneity within the site as well 

as the number of sites being aggregated within the empirical model (Ben-Akiva and Lerman 1985).  

Parsons et al. (2000) investigated the impact that different aggregation schemes have on welfare estimates 

in a region containing 814 unique lakes when the most highly visited five sites are removed. They 

considered a baseline model with the choice set consisting of nearby lakes and a random sample of lakes 

outside the region and compared it to alternative models that aggregated the choice set according to 

regions. They found that their welfare estimates varied depending on the modeling assumptions. This is 

similar to the findings in Feather (1994), who highlighted that the only way we know whether or not our 

estimates are truly biased is if we know the "true" choice set perceived by the decision agent.  

 The benefit of using site aggregation to reduce the choice set is that the geographic extent is 

preserved, however this does come at a cost of not controlling for heterogeneity within the site and the 

number of locations being aggregated (Ben-Akiva and Lerman 1985).  An alternative tool that has been 

used is to reduce the geographic extent of the choice set using a travel distance metric that limits the 

number of sites based on what is a feasible distance to travel. Parsons and Hauber (1998) investigate 

alternative spatial boundaries of a consideration set defined over the travel distance from one’s location.  

They varied the size of the choice set from sites that are 0.8 to 4 hours away from one’s location and 

found that the models stabilized in a consistent range once the spatial choice set was defined at 1.6 hours 

or greater. Whitehead and Haab (1999) investigate the impact of using either a distance-based or potential 

catch filter to define one’s choice set in a recreational fishing demand model. They found that their 
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welfare estimates did not vary substantially as they altered their filter but using a potential catch filter 

altered the value of site quality preferences, mainly the value of expected catch at a site. More recent 

research by Scrogin et al. (2010) developed an empirically-based criterion for the distance selection 

metric.  They construct a two-stage model that first estimates a stochastic frontier model where site 

quality is estimated using a distance cost frontier.  Based on the efficiency rankings that result from the 

stochastic frontier model they select sites to be contained in the choice set using their efficiency scores. 

Although this model is interesting it does require that all the potential elements in the choice set are 

observable.  This is a limitation of all of the aforementioned methods and something that we directly 

address in our proposed choice set model. 

 Researchers have also compared the different methods of restricting the choice set to investigate 

the impact they have on parameter and welfare estimates. Hicks and Strand (2000) investigated the 

sensitivity of welfare estimates to three alternative choice set specifications: full choice set, familiarity-

based choice set and a distance-based choice set. They find considerable heterogeneity in results when 

using these different methods.  However, the distance-based choice set asymptotically approaches the full 

choice set as the distance band increases.  They concluded that if a researcher believes that an individual’s 

choice set does not contain the full choice set they will most likely need to elicit this information from 

them (i.e., generate a familiarity-based choice set) or endogenously estimate it. Banzhaf and Smith (2007) 

conducted a rigorous meta-analysis on welfare estimates as one alters their definition of the choice set 

within the housing market to investigate the impact of air pollution using a hedonic property model.  They 

define their choice sets based on three different variables: geographical scale, an agent’s budget set and 

the length of time one searches for a home. This resulted in 128 different “choice set” definitions and for 

each of them they constructed a welfare estimate and then conducted a meta-analysis of their estimates. 

They found that the assumptions regarding the choice set can alter welfare estimates, but the estimates are 

less sensitive to assumptions regarding the time dimension. They hypothesize that this is true because 

time is not correlated with the other attributes of the model. 

A limitation of all of the models discussed thus far is the assumption that the choice set is finite 

and tractable. In the case of spatial choice models in a number of environmental settings, including 

fisheries, the choice set is virtually infinite as space can be continually divided to form different 

“alternatives.” This would render the standard estimation procedures discussed above intractable. Our 

point-based sampling approach attempts to circumvent this limitation by sampling from an evenly spaced 

fine-scale grid of points within the boundary of observed activity of the fishing fleet. Our model is similar 

to the time-space prism model (Yoon et al. 2012) of restricting the choice set, however we maintain that 

the choice alternatives form a continuous surface of spatial locations and we define space using more than 
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one dimension in our empirical application (we incorporate depth). Each choice location draws on 

information from fishing events that occurred nearby in space and time and in the depth zones. Two 

choice locations may also utilize the same information (e.g. two points close to each other may draw on 

information a fishing event that occurred between them). Furthermore, Yoon et al. (2012) do not formally 

estimate a spatial choice model using their proposed time-space prism in order for them to investigate its 

impact on spatial choice modeling.  Therefore, our MC analysis and application of our proposed model 

provides a unique contribution to the choice set (consideration set) literature. 

3. Grid Point-Based Sampling Models 

To motivate the development of the grid point-based model (hereafter referred to as the “Grid 

Model”), we will first outline the model in a generic sense as applicable to our MC analysis and later turn 

to additional features that are unique to our application and that further highlight the importance of its use 

in complex spatial choice structures. The foundation for our Grid Model is the Random Utility Model 

(RUM; McFadden 1978). Other than how choice sets are determined, our application of this model differs 

little from those used numerous times in environmental economics literature (e.g. Dupont 1993; Eales and 

Wilen 1986; Hicks, Kirkley and Strand 2004; Hicks and Schnier 2008, 2010; Holland and Sutinen 2000; 

Mistaean and Strand 1998; Smith 2002; Smith and Wilen 2003).  Define ���� as vectors of individual, 

site, time-specific attributes related to site-specific payoffs (e.g. distance, revenues, etc.).  Following the 

usual approaches, let ���� be the vector of individual, site, and time-specific factors known to the decision 

maker � but not to the researcher.  Given the preference parameters, �	, assumed to be homogenous 

across decision makers, we can write individual �′� payoffs of choosing location � at time 
 as 

(1) ���� = ������ + ����  

The individual will choose location � having the highest payoffs, 

(2)  ���� > ���� ∀ �, � ∈  �� 

where �� is the choice set for individual �.  Assuming that ���� is distributed as iid generalized extreme 

value (GEV) I, from the researcher’s perspective, the probability of observing individual � choosing 

location � at time 
 is 

(3)           ������� = ��� !

∑ ���#!
#∈$�

 . 

The choice set in the RUM outlined is defined by the elements in ��, and the literature on 

restricting the choice set has predominately focused on reducing the number of alternatives in the 

denominator of Equation 3. The rationale for these approaches is that agents (i.e., individuals selecting a 
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recreational site) are unlikely to be aware of every choice alternative, and therefore distance (e.g. Parsons 

and Hauber 1998, Hicks and Strand 2000), econometric techniques (Haab and Hicks 1997), or actual data 

collected on what sites were considered (Peters et al. 1995; Hicks and Strand 2000) can be used to 

estimate or refine the choice set before or during estimation.  

The argument that decision agents are unaware of or have no incentive to gather information 

about potential choice locations in �� is weak in settings where the decision agent makes repeated choices 

over a continuous space. Furthermore, in a number of these choice settings the decision agent often 

collects detailed spatial data on the observable characteristics, %���, and are likely to have the ability to 

discriminate sites at a very fine, if not infinite, spatial scale. Ideally, one would define the choice set as all 

potential locations, both chosen and not chosen, but this would invariably generate a choice set near an 

infinite number of choices and render itself intractable even with modern computational capabilities. This 

is because as the spatial scale of what is considered a site becomes smaller, in the limit, precise geo-

coordinates become sites and we encounter a curse of dimensionality in the spatial choice set.  

With that in mind, we draw on McFadden’s (1978) sampling approach for choice set formulation 

(and implemented by Parsons and Kealy (1992)) for making model estimation tractable.  It is important to 

note that by sampling from the choice set, this approach assumes that all alternatives being sampled from 

are considered by the agent and the choice set is reduced purely for the sake of computational tractability.  

The two key assumptions are that the randomly drawn choice set, &, satisfy 

(4)  ����'&|�) = ����'&|�)  [The Uniform Conditioning Property] 

(5)   ����'&|�) > 0  ∀ � ∈ &    [The Positive Conditioning Property] 

These properties presume that the geography and definition of all “sites” is known with certainty.  

Unlike the Parsons and Kealy (1992) application, where the set of choice alternatives (in their example, 

small lakes in Wisconsin) is known a priori, we know neither the locations considered to be an 

alternative, the size of these locations, nor if all decision agents agree on what constitutes a choice 

alternative.  However, Parsons and Kealy (1992) fall back on the randomly drawn aspect of the choice set 

to argue that these properties are satisfied.  We do the same here, except that we take an additional step 

and define potential locations as precise geo-coordinates. We approximate the full set of choice 

alternatives on a similarly fine scale by sampling from a finely spaced grid of points.  Covariates for each 

of these grid points are defined by nearby outcomes (both in a geographic and temporal sense). 

To contextualize the sampling approach we use, consider the geospatial activity of our empirical 

application illustrated in Figure 1 using fishing location choices (actual choices depicted as stars) made 

relative to a uniformly specified grid (grey and black dots). Taking a random sample of the uniform grid, 
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we obtain a sampled choice set plus one closest to the location actually chosen (the black dots). The 

sampled grid points represent approximations of potential choices over a continuous set of approximately 

infinite choices that could be made by the decision maker, with the darker shading off the coast capturing 

alternative bathymetric contours which further exacerbates the infinite dimension of the potential choice 

set. The black dots illustrate a set of randomly sampled actual points comprising the choice set &�� for a 

randomly drawn vessel from the fleet currently in the location denoted by the black square and observed 

choosing for example, the grey diamond. A different choice set is randomly sampled (from the set of all 

observed choice locations) for every different discrete choice (i.e., vessel-specific tow in our application). 

In our empirical application the grid points are precise locations (e.g. points with specific latitude and 

longitude) but on a regular grid spaced 3.5 miles apart. This distance is shorter than the length of the vast 

majority of tows. The sampling is still restricted to areas open to fishing and within a feasible distance 

(which is delimited by observations of the geographic range of fishing by the port-based fleets modelled). 

4. Monte Carlo Analysis 

In our Monte Carlo (MC) analysis, we compare the grid-point sampling approach to a traditional RUM 

that aggregates grid points with an arbitrarily defined coarser grid overlay that divides the decision space. 

For the point-based sampling approach the choice set is constructed by randomly selecting sites within the 

decision space.  

4.1 Data Generation Process  

Before discussing the results of our MC analysis, we will briefly outline the data generation 

process utilized to test our proposed model. The data generation process utilizes a spatially patchy 

distribution of a revenue generating resource over a 64x64 grid (4096 individual cells). The grid of 4096 

is sufficient to allow us to compare discrete area models with a range of scales. This revenue generating 

resource could be the spatial distribution of fish species, but in other settings might capture spatial 

heterogeneity of an oil reserve/precious metal, or spatial attributes of recreational sites, to cite a few 

potential applications. To begin the data generation process we first randomly seed a specific number of 

cells, defined as “clumps” (CL), and then allow the resource to diffuse from those seed cells for eight 

periods at a specified diffusion rate, +. Based on the number of “clumps” selected and the rate of 

diffusion, this generates different spatial surfaces of the resource base that define how patchy or 

concentrated the resource is in our analysis. While our MC is designed with fisheries in mind, the clumps 

parameter determines whether there are lots of very small good locations or fewer larger ones, while the 

diffusion parameter determines how quickly density of the resource (or the value generated at a cite) 

changes as you move away from it a given location. These characteristics might also be true for other 

applications (e.g. mineral deposits, recreational fishing sites, recreational boater on-water site choice, 
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back-country camping site choice, business locations, residential neighborhood quality, etc.).  Each of the 

randomly drawn seeds in the predefined clumps was drawn from a normal distribution, ,'0, -.), and 

used in our data construction for the variable /���
0  described below. Figure 2 provides a graphical 

illustration of the resource’s spatial distribution for a few of the different parameter combinations utilized 

in our MC analysis.  

Once this initial resource surface is determined we generate a panel data set (termed “logbook 

data” below) consisting of 50 decision agents each making ten spatial discrete choice decisions. This 

results in a panel data set of 500 observations for each MC. In the context of a fishery this would 

represent 50 vessels each making ten different spatial location decisions. For each unique spatial decision, 

the decision agent selects the location on the grid with the highest expected utility,  

(6)    ����'�, /, 1) > ����'�, /, 1)  ∀�, � ∈ �� , 

where  ����'�, /, 1) = �0/���
0 + �2/���

2 + 1���.      

Within the indirect utility function, ����, � represents the decision agent, � represents the spatial 

location and 
 represents the time period. /���
0  is the expected revenue generated from the spatially 

distributed resource and /���
2  is the distance one has to travel from their current location to obtain the 

resource. The error structure, 1���, is a GEV error appended to the indirect utility function that is assumed 

to be known by the decision agent but not the researcher. On the first decision made by the decision agent 

we randomly assigned them a starting point within the grid, with all future distances calculated based on 

their current location.  

In order to generate data that can be used in the MC analysis we apply a commonly used spatial 

aggregation heuristic (aggregating choice sites within regular grids of various sizes) with additional 

random noise to generate uncertainty in the data. When generating the set of initial location choices that 

make up the logbook data (that defines choices at precise points in the choice space) agents utilize to form 

expectations, a randomly distributed error term ,'0, -3), is added to the true density of the resource 

surface at each location. Locations are chosen based on this expected return observed with error and the 

true distance to the location according to the utility specification and multinomial probabilities in 

equations 2 and 3. This results in a set of location choices that includes some locations outside the areas 

of highest density. The actual return realized from these spatial choices (that is then recorded in the 

generated logbook data) is adjusted by adding another randomly distributed error term drawn from the 

normal distribution, ,'0, -4). This creates a random error between the expected return that motivated 

that particular location choice and the actual return that is reported in the logbook and is used in 
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developing expectations for utility of subsequent choices. We define this actual return variable as /���
04 , 

where k is the chosen site made by decision agent i in time period t.  Information on the actual return is 

then used in the RUM model to construct the expected returns from visiting a site by using temporally 

lagged observations of /���
04  within a defined spatial distance of an individual site, or coarser spatial grid 

overlay in the context of the traditional RUM, and then calculating the average of these observations.  In 

the MC we used a five-period lag (i.e. observations from the prior five choice periods) for the calculation 

and a spatial buffer that utilizes only the adjacent cells for the grid-point model. In the traditional RUM 

all averages were constructed at the zone level. The travel distance variable, /���
2 , was calculated using the 

observed sequence of choices made with the starting point for the first spatial decision being randomly 

selected from among the 4,096 individual cells and using unit measurement at the grid-point level. The 

grid of 4096 was sufficient to compare a range of scales, and this range is also reflective of the scales in 

the empirical application. There are other parameters that could be varied, but we focus on those we 

thought likely to be most important (scale, patchiness of resource, and various forms of noise). Distance is 

assumed to be known without error. 

The preference parameters, contained in the vector �, were initialized at one for the spatially 

distributed resource, �0 = 1, and negative one for the distance parameter, �2 = −1. To generate spatial 

choices that were less correlated with the spatial distribution of resource, we varied the GEV scale 

parameter, 7, which captures the appended GEV error structure to the indirect utility function illustrated 

in Equation 6. The GEV scale affects the relative weight of the model parameters versus the error term. 

For example, with 7=20 the effective parameter values for revenue and distance are 0.05 and -0.05, 

respectively. When 7=30 the values are 0.033 and -0.033, respectively. As the GEV scale parameter, 7, 

increases, the distribution of location choices becomes less closely tied to the highest density of the 

resource base.  

In the grid-point model, the RUM data for each observation includes distance, /���
2 , and expected 

spatial returns, /���
0 , for a choice set of 50 potential locations including 49 randomly chosen grid points 

and the actual location chosen. Increasing the choice set size beyond 50 has no appreciable effect on 

coefficient estimates and bias but slows the MC. The traditional RUM model uses the same underlying 

spatial choice data and process to generate the data contained in /���
0  and /���

2 . However, an aggregation 

factor is specified to create a coarser grid which is overlaid on the fine grid. This coarser grid defines a set 

of discrete areas. The aggregation factor is set at 16, 64, or 256 dividing the grid of 4,096 cells into a 

coarser grid of 256, 64, or 16 discrete areas respectively. For each observation the choice set consists of 

all of the discrete areas. Distances for the traditional RUM model for each potential location choice are 

the distances from the current location to the central grid point of each discrete area. Expected returns for 
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each potential choice is a simple average of all observations that fall in that coarse grid cell within the 

prior five decision periods. This is consistent with the time window used in the grid-point models, but the 

definition of “location” is significantly larger. 

We evaluate and compare the performance of the different choice set models for a full 

combinatorial experimental design of seven different variables for the MC analysis. Table 1 outlines the 

set of parameters used in our data generation process. This generates a total of 864 different sets of MC 

model variables. For each combination of MC variables we ran 200 replications using the same spatial 

resource surface and choice data generated to estimate each of the RUM models creating 172,800 

replications in total.  

 

4.2 Monte Carlo Performance Metrics  

To compare the two models we explore both parameter bias and measures of predictive accuracy. To 

measure bias we calculate the average difference between the true parameter in our data generation 

process and that estimated in our MC analysis. To measure the predictive accuracy of our models we 

utilize four different model performance metrics. All metrics except the distance-based metric attempt to 

examine the predictive accuracy of the model in terms of how well each choice set model predicts activity 

into the traditional choice set. Consequently, if the grid-point model places high probabilities inside of 

zones defined by the traditional choice model then the predictive accuracy can be compared from the 

most granular to coarsest spatial resolution.  

For each decision agent in our MC define the predicted site choice as, 

(7)  89�� = argmax
�∈?�

������� 

Note that the �� will vary over the choice set method utilized. For the traditional choice set model 

�� will be defined over the coarser grids used to divide space, whereas for the grid-point models it will be 

individual points in the uniform grid. Note that for the grid-point model the predicted choice is based on 

the expected utility of all locations given the estimated parameters and relevant data, not just the fifty 

locations sampled during the estimation process. Based on this representation we estimate the following 

four prediction methods. 

Prediction Method 1: The method, referred to as the Correct Prediction (CP) method, calculates 

the score 

(8) @� = ∑ ∑ 'A9�!∈B�!)
CD

D
�E0

C
�E0  
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where /�� is the site actually chosen by individual � in time period 
 and '89�� ∈ F��) is a logical 

operator that takes a value of one if the predicted site is the actual site chosen by the decision agent. The 

metric, @�, is simply the percent of sites that are chosen correctly by the model.  

Prediction Method 2: The method, referred to as the Correct Prediction Summed (CPS) method, 

calculates the total probability within the chosen site, F��: 

(9)  �����B� = ∑ ��������∈B  

This metric sums the estimated probabilities within an aggregate zone and based on that then 

calculates the prediction based on that summed probability, 

(10)  89��
4 = argmax

B∈.
�����B�. 

We denote this prediction with the superscript A to make explicit that we are predicting to the 

aggregate zone level. The previous method, CP, focuses on the point having the maximum probability 

(for the grid-point method). Similar to before the CPS score is calculated as follows, 

(11) @�� = ∑ ∑ 'A9�!
GEB�!)
CD

D
�E0

C
�E0  

where F�� is the chosen aggregate zone. 

Prediction Method 3: This method, referred to as the Probability Mass (PM) approach, uses the 

total probability mass in the chosen area defined by the traditional model, irrespective of whether it was 

the highest predicted probability, and reports the mean over the sample. For this and the PM metric below 

it is possible that more than one location fell within the correct discrete area and the probabilities for those 

areas would be summed. This metric is the following, 

(12)  �H = ∑ ∑ IJKL�M!

CD
D
�E0

C
�E0  

Prediction Method 4: The metric, referred to as the Distance (D) approach, calculates the mean 

distance, &, from 89�� to the site actually chosen, F��: 

(13) & = ∑ ∑ N'A9�!,B�!)
CD

D
�E0

C
�E0  

4.3 Monte Carlo Results 

To evaluate the performance of the models we conduct a meta-analysis of the different MC experiments 

using the average performance metrics over the 200 replications for each of the 864 parameter 

combinations. In addition to comparing the performance average across all MC parameterizations, we use 
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a regression analysis to determine what parameters of the data generation process influence model 

performance.  

4.3.1 Parameter Bias 

The data generation process initialized the true revenue parameter, �0, to be 0.05 with 7=20 and 

0.033 with 7=30. The true distance parameter, �2, is -0.05 with 7=20 and -0.033 with 7=30. Table 2 

provides the average parameter estimates and bias of parameter estimates (averaged across all 

combinations of MC experiment variables) as well as the average percentage bias in parameters, broken 

down by the GEV scale parameter. On average both models under-estimate the revenue parameter, �0, 

(all biases are negative). The average absolute bias of �0 is smaller in magnitude for the grid-point model 

relative to the traditional model (i.e. the traditional model estimate is closer to zero). The standard 

deviation of average parameter and bias measures (shown in parentheses in Table 2) demonstrate that 

parameter estimates and bias vary substantially across the 864 combinations of MC parameters. For 

example, the traditional model gets smaller with the aggregation level (see Table A1 in Supplementary 

Appendix A). The bias of �0varies for different combinations of the MC experiment variables but is 

nearly always negative and for most combinations of parameters the absolute bias is smaller for the grid 

model (Figure 3). Although absolute bias varies, the percentage bias of �0 is similar for the different 

levels of the GEV scale parameter. 

For the distance parameter, �2, the average bias (across all MC parameterizations) is negative for 

the grid model and positive for the traditional model. However, the absolute value and percent bias of the 

distance parameters for all three models is much smaller in magnitude than for the revenue parameter. 

Also, unlike the bias in �0, the bias in �2 for the traditional model varies in sign for different 

combinations of experiment variables (Figure 3). 

To determine how the different data-generation parameters impact the differences in absolute 

value of bias across models, we regressed the differences in the absolute value of bias between models 

against dummy variable indicators for the data generation parameters. We run separate regressions of the 

two values of the GEV scale parameter, since it changes the true model parameters and thus the absolute 

effect of the MC parameters. The results from these regressions are shown in Table 3. A negative 

regression coefficient indicates that this MC variable increases absolute bias relatively more for the 

traditional model than the grid model (i.e., favoring the grid model) and a positive coefficient indicates 

the opposite. 

First, consider the results for the revenue parameter �0. The results indicate that a larger number 

of clumps used to initialize the resource distribution (which leads to a more broadly distributed resource 
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surface) tends to increase the relative advantage of the grid model in accurately identifying the revenue 

parameter. Higher diffusion rates tend decrease the advantage of the grid model where the difference is 

significant. A higher distance scale parameter has opposite effects depending on the GEV scale 

parameter. Higher error in expected revenue when initializing the logbook data has no significant impact 

on relative performance. However, error in the actual revenue recorded (which creates a gap between 

expectations that drove choices and the outcomes of those choices recorded in the logbooks used to create 

expectations of modeled choices) tends to narrow the difference in bias, i.e. decreasing the advantage of 

the grid-point model. While larger error increases bias for both models it affects the grid-point model 

more, thus reducing its relative advantage (see Appendix Table A1). Higher aggregation factors do not 

affect grid-point model but increases absolute bias for the traditional model thus increasing the difference 

in absolute bias in favor of the grid-point model. It is notable that across all the 864 different sets of MC 

parameter combinations absolute bias in revenue parameter is lower for the grid model in comparison to 

the traditional model for a given set of MC parameters.  

Next we consider how MC variables effect the difference in absolute bias of the distance 

parameters for the two models. Recall the average absolute bias for the distance parameter is much 

smaller than for the revenue parameter (Table 2). Again, a negative coefficient in Table 3 indicates the 

advantage of the grid-point model is increased, and positive the opposite. The highest clumps value for 

the smaller scale parameter favors the grid model but difference is small barely significant. The higher 

diffusion rate favors the traditional model with the higher GEV scale parameter. The higher distance scale 

favors the grid model while higher error in actual revenue favors the traditional model as it did for the 

revenue parameter. As with the revenue parameter bias, the grid-point model is unaffected by higher 

aggregation factors while absolute bias increases for the traditional model thus worsening its relative 

performance in terms of accurately estimating the distance coefficient. While the grid model tended to 

have lower absolute bias in estimation of the revenue coefficient for most MC combinations, that 

advantage does not hold for the distance parameter where the grid model has lower absolute bias for only 

46% of MC parameter combinations. 

We focused above on the difference in bias for the different models. Regressions of absolute bias 

for each model are provided in Supplementary Appendix A2. These indicate that the models are mostly 

affected in the same way by the MC parameters but some parameters affect one model more than the 

other. For example, higher numbers of clumps, the highest diffusion rate, and larger error in the actual 

                                                           
2 Although the ratio of revenue and distance parameters is a relevant metric in practice since it may be used in 

welfare analysis, we did not compare models on the basis of the average of this ratio because parameter estimates 
for revenue individual realizations can become very small causing the ratio to become very large. These realizations 
with extremely large ratios dominate the average making it unsuitable for assessing relative performance. 
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revenue tend to make bias in the expected revenue parameter more negative (larger in absolute value) for 

both models but by different amounts that also vary with the scale parameter. Another clear result is that 

the higher aggregation factor, which increases bias for the traditional model but does not affect the grid-

point model, tends to favor the grid-point model. It is also clear that the grid-point model is more 

impacted by larger error in the actual revenue variable narrowing its advantage at identifying the revenue 

parameter correctly. General results are less clear for the bias in the distance parameter, but average bias 

for all the models is much smaller so perhaps less consequential.  

4.3.2 Prediction Metrics 

The Traditional model performs slightly better on correct prediction (CP) with 25% correct prediction 

compared to 24% for the grid model (Table 4). Note that for prediction metrics for the grid model, 

predictions are based on estimated choice probabilities for all 4096 grid cells, not just the 50 sampled 

choice sets. To predict the correct site the grid point with the highest predicted utility out of all 4096 sites 

must fall in the correct traditional grid area. In contrast the traditional model is predicting choices over a 

set of between 16 and 256 choices corresponding with the discrete areas.  

For other predictions metrics the grid model performs better. The grid model has higher slightly 

higher score for correct prediction summed (CPS) at 26% relative to 25% for the grid model. Thus, while 

they predict the correct area less often based solely on the highest probability choice, when predictions 

are based on the summed probabilities of choices in each discrete area the grid-point model predicts 

choices more often than the traditional model. The grid-point model has a higher average score for 

probability mass (PM) in the correct area (summed probability associated with all choices in the correct 

discrete areas) at 22% compared 17% for the traditional model. The grid-point model also has lower 

(better) scores on the distance (D) metric which looks at the distance between the centroid of the 

predicted and correct areas (using the traditional model areas).  

As we did for bias, we ran regressions of the difference in performance of the models as a 

function of the MC parameters (Table 5). Since high scores are better for CP, a positive coefficient means 

that variable tend to favor the grid model. While the traditional model has the highest CP score when 

averaged across all parameterizations, the performance of the grid-point model improves relative to the 

traditional model as the clumps and diffusion rates and GEV scale increase. A higher aggregation factor 

also improves relative performance of the grid-point model relative to the traditional model. Error in 

expected catch has no significant effect on relative prediction but error in actual catch favors the grid 

model. 

The effects of different MC parameters on relative CPS scores differ from the effect on CP (Table 

5). For the CPS metric, higher clump values improve the performance of the traditional model relative to 



17 

 

the grid  models as a higher GEV scale parameter. A higher diffusion rate and the higher aggregation 

factor favor the grid model. Error in expected or actual revenue has no significant effect on relative 

prediction. 

Table 5 also provides regression results for the difference in the PM scores for the alternative 

models as a function of MC parameters. The grid-point model had the highest PM score when averaged 

across all MC parameters, and relative performance of grid over the traditional model was increased with 

higher diffusion rates, a higher distance scale, and a higher aggregation factor. 

The last performance metric we regress against MC parameters is the Distance (D) score which 

focuses on the implied distance from the predicted site selected and the actual site selected in the data. A 

lower D score indicates that the model predicts a choice closer to the true choice in the data set and is thus 

a better score, so a negative coefficient in the regression favors the grid model. A higher clumps setting 

tends to improve the performance of the traditional model relative to the grid-point models as does a 

higher diffusion rate, higher GEV scale and larger error in actual revenues. However, a higher 

aggregation factor worsens performance of the traditional model relative to the grid-point model in terms 

of the D metric as does a higher distance scale 

 

5. Empirical Application of Proposed Grid-Point Model 

To illustrate the grid-point model in an empirical application we apply it to a fishery with a 

spatially heterogeneous fishing landscape, the Pacific groundfish trawl fishery.  The period modeled using 

this data coincides with implementation of individual fishing quota (IFQ) management regime. 

Individuals were allocated quota shares for 28 groundfish stocks and stock complexes as well as 

individual bycatch quotas for Pacific halibut. Fishers must cover all catch of IFQ species with quota 

pounds (the annual form of quota) and 100% observer coverage ensures all catch is accounted for whether 

landed or discarded. Fishers may buy and sell quota, and there is an active quota market for many species. 

Quota prices for some rockfish species taken incidentally have quota pound prices that exceed the ex-

vessel value of the fish creating incentives to avoid catching them (Holland 2016). We account for the 

economic tradeoffs induced by the IFQ system by netting IFQ costs from ex-vessel value for all IFQ 

species when estimating expected revenue from alternative location choices.3 

                                                           
3 We originally tried estimating models with variables representing expected bycatch explicitly since anecdotal 
evidence suggested bycatch avoidance was a major driver of location choice. We found that signs on these variables 
were sometimes contrary to expectations (e.g. positivity) which we suspect is due to strong correlation between 
expected catch of target and bycatch species and our inability to model expected bycatch effectively at a fine enough 
scale since bycatch is a relatively rare event in some instances. Consequently we opted to simply include quota costs 
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Catch rates for both targeted species and incidentally caught rockfish species that fishers may try 

to avoid have been shown to be correlated with depth and latitude and can be very patchy (Holland and 

Jannot 2012). Because changing depths requires changing the length of tow cables, trawlers will generally 

avoid large changes in depth during a tow and will stay along depth contours. Depth can change 

dramatically over small distances in many areas when going against the contour.  Fishers generally return 

to the same port from which they departed (along this coastline that mostly runs North-South), but may 

make several tows during a trip.  

In this setting, the traditional discrete area choice set approach may be problematic, particularly if 

the definition of choice areas does not reflect the physical geography of the system and the way it affects 

fish distribution. To make this more concrete consider some geography and site choices made by a sample 

fleet in our data set (Fleet 6).  In Figure 4a, we have a stretch of coastline where a quarter degree latitude 

grid (roughly 27 miles in north-south distance) might successfully “divide space” if combined with 

bathymetry data (given by the depth profiles as one goes deeper away from the coast). In this example, 

the small circles are actual site choices made by fishermen. For this fishery, defining discrete fishing areas 

with a regular grid based on latitude and longitude would make little sense unless done at a very fine 

scale, but a choice set structure that involves a latitudinal location and depth zone may be more 

appropriate. However, other stretches of coastline fished by this fleet look quite different (see Figure 4b).  

Notice that the depth contours (the geography that helps define choice for this fishery) do not run in any 

direction in a predictable way. Indeed, a vessel considering a move to the 300-fathom contour from the 

500-fathom contour (like the one highlighted) can choose one of several areas within the same latitude 

band- each in opposite directions.  As the underlying geography becomes less predictable and the 

importance of this geography for choice increases, the traditional site aggregation approach may have 

significant limitations. 

The grid-point model with a fine enough grid may be better able to account for this fine scale 

heterogeneity of this fishing landscape.  We estimate a grid-point model sampling from points spaced 3.5 

miles apart. This is a shorter distance than the great majority of tows (i.e. distance from where trawl is 

dropped to where it is brought up). Arguably the grid-point model as applied here is a reasonable 

approximation of the true spatial definition of fishers’ decisions since at least one grid point will typically 

fall within the area covered by a tow.  

We model location choices for 71 trawlers participating in the groundfish limited entry ITQ trawl 

fishery during 2011 and 2012, the first two years of operation under ITQs.  We group the vessels into 8 

                                                           
for both target and bycatch species in expected revenues and note that high expected bycatch of some species can 
drive expected revenues below zero since quota pound prices for those species can exceed the ex-vessel price. 
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fleets centered around ports in Washington, Oregon and Northern California (Table 6).  Fishing locations 

as well as ancillary information such as species catch estimates, depth and gear are drawn from data 

collected by observers who are present on 100% of trips. Although we only model location choices in 

2011 and 2012, we use 2010 logbook data to construct some of the models’ explanatory variables such as 

expected revenue and whether the individual vessel had fished in that location the prior year. It is 

necessary to use logbook data for 2010 since there was only partial observer coverage in 2010 while 

logbook data is comprehensive.  

We used data collected by the West Coast Groundfish Observer Program (WCGOP) run by the 

Northwest Fisheries Science Center as well as fishticket data provided by PacFIN to estimate moving 

average prices for species or species groups by port group. Port specific moving average prices (based on 

sales prior to the date of the choice being modeled) are applied to the estimated catches in the logbook 

data to derive estimates of expected revenue per tow.  We also make use of data on quota pound transfers 

collected by the National Marine Fishery Service to estimate the value of quota pounds by ITQ stock. 

Quota pounds are the annual form of quota, thus quota pound prices are similar to lease prices. These 

quota pounds prices are used to estimate net revenue per pound for ITQ species. Net revenue per pound is 

the estimated ex-vessel value less the value of the quota pounds which might be either an opportunity cost 

or an out of pocket cost if the individual has to purchase the quota pounds to cover catch.  As noted 

earlier, quota pound prices for some of the overfished rockfish species exceeded ex-vessel price during 

these years making net prices negative for these species. 

Considering points as sites requires the researcher to characterize the various independent 

variables in Table 7 for every site that is sampled.  Figure 1 demonstrates how this is done, but it requires 

some additional input from the researcher: the relevant spatial buffer and time dimension for supporting 

the calculation of these independent variables. We compared the performance of models with a variety of 

alternative distance-time buffers before settling on a distance-based criteria of 3 miles and a time criteria 

of the previous 30 days to determine which lagged observations were used to calculate expected revenue.  

Given the actual date of this tow, we find tows in the depth band, and within the 3 miles of the potential 

choice location, that occurred within the past 30-day period.  We use all tows (the grey and black dots) 

not just the sampled tows (black dots) for making this calculation.  Once we find the tows for the fleet 

satisfying those conditions, we average the observed net revenues using a simple mean4.  In this example, 

considered to be 50-fathom alternative, we find the actual tows (stars) in the 50m fathom depth band 

within the radius and take a simple average of catch for our expected revenue value used in the analysis.  

                                                           
4 We tried estimating models with more complex regression based methods of estimating expected revenue that 
included physical covariates, but found the simpler models worked better. 
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We do this for every sample location (black dot) for each observed tow.  Defining shorter time and 

distance bands makes the expected revenue “surface” more spikey and adds variation. It is also important 

to note that the sampling method uses nearby information whether it is another latitude band or the same 

one but only locations in the same depth band and can therefore be thought of as approximating an 

expected revenue surface in continuous latitude-longitude space.  

We can define the moving average revenues for any individual �, site � , and time 
 as 

(14)   OP���'QR, SR) =
T∑ ∑ ∑  U   V TW# XWYZ∗T�\DYX]X�Z∗^V U Z

C'WY,DY)
 

Where O_�� are other tows taken by vessel ℎ (could be equal to �), to point �, at time a. 

TQ�� < QRZ and '
 − SR < a < 
) are logical operators equal to 1 for only the ,'QR, SR) other tows in the 

fleet meeting the distance and time requirements, respectively.  Distance (&��
cdef) from the location of 

the end of the last tow (or the port on the first tow) to the location of each potential choice is calculated 

using the standard great circle geometry formula. We calculate other site-specific information such as the 

habit dummy variables which take a value of one if the individual fished within 3 of miles of that location 

in the past 30 days (gc��
hR) or within a 30-day period surrounding that date the prior year (gc��
A�iJ).5  

The habit dummy variable are include as it has been shown that fishermen tend to fish locations that they 

have fished in the past (Holland and Sutinen 2000). There is also a dummy variable on missing activity, 

defined as &jkl�mm�no, when there is no information to calculate expected revenue  

Our grid-point model used in the application is a modification of the grid-point model used in the 

MC. In the MC we divided all space up into 4,096 grids from which any of these points could be 

randomly sampled as a potential choice alternative in the grid-point model. In our application we are 

limited by the curse of dimensionality as the choice space is of extremely high dimension (nearly infinite) 

in both space and depth. To circumvent this, we generate a grid of points evenly spaced 3.5 miles apart 

from each other within the seven depth zones (0-50, 50-100, 100-150, 150-200, 200-250, 300-500, and 

500-700 fathoms) and then randomly sampled 50 alternatives from this grid to construct the grid-point 

choice set.  

For the traditional choice set model we divide the choice space using quarter-degree latitude 

bands combined with the seven depth zones (see Supplementary Appendix C for charts). Recall that the 

traditional choice set model is not able to fully exploit the spatial heterogeneity since vessel movements 

within a “zone” are treated as not moving and site-specific characteristics such as expected revenues and 

                                                           
5 We use a threshold of 3 miles to limit the tows used in the calculation, but we have run models with 10 and 15-mile 
thresholds as well to investigate the robustness of our estimates and find our results quite robust to this specification 
(see Table B1 in Appendix B). 
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bycatch are the same within the zone.  The choice set for each fleet is limited to areas that were fished by 

that fleet between 2010-2012. Expected revenue for the traditional model is calculated by averaging 

revenue from all tows that occurred within the specific zone the prior 30 days (using the reported catches 

and lagged moving average port prices to calculate revenue for each tow). Habit dummy variables reflect 

whether that zone was fished by that individual the prior 30 days or the 30 days surrounding the date the 

prior year. The dummy variable on missing activity takes a value of one when there were no tows in that 

zone the prior 30 days.  Distance from the location of the end of the last tow (or the port on the first tow) 

to the center of each choice zone is calculated using standard great circle geometry formula.   

5.1: Application Results 

Like previous location choice studies in other fisheries, our models suggest that fishermen 

generally prefer to fish a closer site than a further one both when choosing the location for the first set of 

the trip and for subsequent sets within a trip. Models for all fleets, regardless of the choice set 

specification, have negative and significant signs on &��
cdefp�Jm� (distance from port to locations 

choices for the first tow of the trip) and on &��
cdef  (distance from the endpoint of a tow to the start of 

the next tow) (Table 8). The magnitude of the coefficients is similar across choice set specifications. For 

all but one fleet, and for both model specifications, the coefficient on &��
cdefp�Jm� is smaller than the 

coefficient &��
cdef indicating that, while closer locations are preferred, vessels are less averse to going 

a long distance when steaming out from port and choosing a location for the initial tow. In essence, they 

appear to be treating the costs incurred to travel to the fishing grounds as a fixed cost (or a cost spread 

across the subsequent tows on the trip) and the distance traveled between tows to be the relevant marginal 

cost in their spatial choices. The only exception is for fleet 4 for which the coefficient &��
cdefp�Jm�  is 

larger than &��
cdef. Fleet 4 has substantially longer average tow lengths (measured in hours) than all 

other fleets and it also has the smallest coefficient on &��
cdef. The longer tow length would tend to 

reduce the ratio of tow time to steam time, which may be why this fleet appears to be less averse to 

travelling further between tows. 

For nearly all fleets and model specifications the coefficient on expected revenue on the first tow 

of the trip, Ofqfdjfp�Jm�, is positive and significant (Table 8). This suggests that vessels are attracted to 

areas with higher expected revenues, as would be expected. The only exceptions are for fleet 4 for which 

expected revenue on the first tow is not significant for the traditional model. Results are less consistent 

with the coefficient on expected revenue for subsequent tows, Ofqfdjf. For the grid-point model the 

Ofqfdjf coefficient is significant and positive for all fleets other than fleet 6. For the traditional model 

Ofqfdjf is significant and positive only for fleets 7 and 8 and is significant and negative for fleet 5. The 

lack of significant Revenue coefficients for the traditional model for several fleets may be due to the 
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coarser spatial resolution in the choice set which may be aggregating a number of fishing areas of 

differing fishing quality. It is notable that the grid-point model works best with only a 3-mile radius to 

estimate expected revenue (Appendix B). This suggests fishers respond to heterogeneity at a very fine 

scale which is consistent with anecdotal accounts from fishers and what we know about the patchiness of 

the resource. 

For the most part the coefficients on revenue after the first tow, Ofqfdjf, have a higher 

magnitude for the grid-point model relative to the traditional model. The coefficients for Ofqfdjf in the 

traditional model are very small and mostly not significant. Notably, since distance coefficients are fairly 

similar across models, the ratio of revenue to distance coefficients tends to be smaller in magnitude for 

the traditional model. The ratio for coefficients on expected revenue and distance is sometimes used in the 

welfare analysis of management actions such as area closures, e.g., to determine the expected value of 

compensation needed to keep fishers’ utility constant after the removal of the closed areas as a fishing  

choice (e.g., Curtis and Hicks 2000, Hicks et al. 2004). Negative bias in the revenue coefficient, and 

smaller absolute ratio of revenue and distance coefficients, could inflate welfare estimates of the cost of 

closures or lead to negative estimates for negative draws of the revenue coefficient if its confidence 

interval bounds zero. This is indeed the case in our application (see Section 5.3 below). The smaller or 

insignificant coefficients for expected revenue for the traditional model are consistent with the results of 

the MC analysis. 

Like Holland and Sutinen (2000) we find that fishermen tend to visit sites that they have a prior 

history of visiting. The gc��
hR variables, which take a value of 1 if the vessels fished that location 

within the last 30 days, are positive and significant for all fleets for the grid-point model (Table 8). This 

variable is not significant for fleet 2 for the traditional model but is for all other fleets and models. This 

site fidelity also appears to be long lasting since the coefficient on fishing within 3 miles of that location 

in a 30-day time window around that date the prior year, gc��
A�iJ, is also predominately positive and 

statistically significant.  

The coefficient &jkl�mm�no which indicates there has been no fishing by any vessels at that 

location in the prior 30 days (and thus no data to calculate the revenue variable for the site) is 

predominately negative and significant for the grid-point and traditional model indicating that fishermen 

tend to avoid these areas (Table 8). As noted above, the grid-point model and the traditional model 

include locations that may never have been fished or may be unfishable, and this may partly explain the 

negative value of &jkl�mm�no for these models as it may be serving as a proxy both for areas that were 

not fished recently and those never fished. These areas may also have been avoided due to concerns about 

bycatch of rockfish. 
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5.2: Prediction Performance Metrics Results 

We calculate the same performance metrics utilized in the MC to evaluate the predictive 

performance of each model in our application. For these predictions, the traditional model is predicting 

the choice and choice probabilities amongst all of the traditional areas. For the grid model it is predicting 

the choice and choice probabilities for all grid points with the range of the fleet – not just the grid points 

sampled in the choices. The number of grid points in the full choice set range from a low of 209 for 

Fleet 2 to a high of 1030 for Fleet 7. These tests show clearly that, in almost all cases, the grid-point 

substantially outperforms the traditional models in terms of predicting locations choices whether 

considering the proportion of choices correctly predicted, the correct prediction probabilities summed, or 

the probability mass assigned to the actual choice (Tables 9 and 10). For the first tow, the traditional 

model has higher prediction scores for the CP and CPS metrics for Fleet 2 and for the CP and PM 

metrics for Fleet 6, but grid model prediction is always superior when modeling predictions for tows 

other than the first tow. The grid-point model also has a smaller average distance between the predicted 

and actual choice in all cases except when predicting the first tow for fleets 6 and 8. This is likely due to 

the fact that distance plays a much strong role in subsequent tows which tends to limit the number of 

acceptable choices for the next tow. Both grid-point and traditional models do a poorer job predicting 

the location of the first tow than they do for subsequent tows. This is probably because distance does not 

play as strong a role in determining location choice for the first tow.  

 

5.3: Policy Experiment and Welfare Estimates 

Another policy metric we use for comparing the grid model to traditional methods is a welfare measure 

for area closures. Following other applications for welfare effects of area closures in commercial fisheries 

(e.g., Hicks and Schnier 2008;  Hicks et al. 2004) we measure commercial fishers’ willingness  to  pay 

(WTP) to  avoid an area closure. Specifically we evaluate welfare effects of a closure of the 50-100 

fathom isobaths and of the 200-250 isobath. These are hypothetical closures, but Pacific Fishery 

management council recently passed an essential fish habitat amendment to the groundfish fishery 

management play that would enable temporary closures of this type on an emergency basis in response to 

high levels of salmon bycatch. Denoting fisher i’s utility function at site k as6 

(15) �'%���, �) = �W&��
cdef��� + �JOfqfdjf��� + �r�mm&��� + �_gc��
���,hR + �_sgc��
���,s + 1��� 

= q'%��� , �) + 1���             

Further, denoting K as the full set of choice alternatives and KC as the subset of alternatives available to 

                                                           
6 For the sake of brevity, we don’t distinguish between first and subsequent tows here. 
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the fisher following an area closure policy, we can write the fisher i’s willingness to pay to avoid the 

closure for tow t as 

(16)  tS��� = uv [∑ x'y� !,z)]|}~[∑ x'y� !,z)] ∈�� ∈�
z�

         

following the well-known compensating variation expression first derived in Hanemann (1982) assuming 

linear income effects. We present sample means of these measures across all individuals and tows. 

Some important caveats should be mentioned with respect to this measure. Utility units are 

converted to willingness to pay by way of our model’s coefficient on expected revenue. An ideal 

modeling approach would be to include site-specific profits at each alternative that would net costs such 

as travel costs and operating expenses from revenues. Due to data limitations we are unable convert travel 

distance to costs in defensible way since costs per distance unit travel isn’t known. Therefore we enter 

distance in the utility function directly as a separate argument. Other costs that vary by site are not 

included in our specification but we believe that travel distance to site is the primary site-specific variable 

cost of concern. Additionally, we assume that site covariates won’t change as a result of the closures. 

Despite these limitations, we believe that the welfare measure provides a useful additional performance 

metric for comparing to traditional methods. 

The welfare estimates for closures (WTP to avoid the closure) when applied to tows other than the 

first tow (Tables 11) vary substantially across fleets but even more so across choice set specifications 

(grid vs. traditional). The estimates from the grid model tend to have narrower bounds and be positive - as 

they should be theoretically. Estimates for the traditional model often have very wide bounds with 

negative mean results in some cases and bounds that include negative values in others.  The reason for 

this is that coefficients for expected revenue from the traditional model are often much closer to zero and 

are often not significant having confidence intervals that span zero. Draws from the covariance matrix can 

result in the denominator in equation 16 being very small (leading to very large magnitudes) or negative 

(leading to negative estimates of welfare effects).  

The welfare estimates for first tows (Table 12) are much more similar across models, and estimates 

are positive and have smaller bounds for both models. This is because revenue coefficients for the first 

tow are generally significant and positive for both models, though revenue coefficients are smaller for the 

traditional model than the grid model.  Since the revenue coefficient is in the denominator of equation 16, 

we might expect mean welfare estimates for the traditional model to be inflated relative to the grid model. 

However this is not necessarily the case. While the smaller revenue coefficient does tend to increase the 

welfare estimate all else equal, the numerator in equation 16 is also impacted by distance and habit 

variables which can make the relative effect of the deep or shallow closures vary for different fleets and 
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models. This accounts for differences in relative welfare impacts of shallow and deep closures for the two 

models for some fleets. 

 

5.4 Robustness checks for Effects of Heterogeneity 

The RUM models presented in the prior sections included habit variables in the utility function 

which, since they are positive and significant, show that, all else equal, individuals tend to prefer fishing 

locations they have fished in the past. While these variables are intended to capture state dependence, they 

can confound state dependence and heterogeneity (Heckman 1981, Smith 2005). To the extent that the 

habit variables capture heterogeneity this would suggest that, for two areas with the same expected 

revenue based as estimated in our model from fleet activity, an individual’s expectation of profit will be 

higher for an area they have fished. This might reflect personal knowledge of how to fish that area. It is 

possible that this could cause bias in other model parameters, particularly the expected revenue parameter, 

and this could in turn bias welfare estimates (e.g. estimating the cost of a closure) which are strongly 

influenced by the expected revenue coefficients. To explore the robustness of our base model we run 

models without habit variables and also models with a mixed logit formulation allowing coefficients to 

vary randomly with a normal distribution. The results from these models are presented Supplementary 

Appendix D. We summarize the findings below. 

For models run without habit variables, coefficients on distance and expected revenue generally 

exhibit only small changes in magnitude and levels of statistical significance are unaffected in all but a 

few cases. Likelihood ratio tests reject eliminating the habit variables, though, as we note below, they do 

support allowing for heterogeneity in the utility function for some parameters. Predictive accuracy 

generally declines with elimination of habit variables as expected but the degree of decline varies by fleet. 

Decline in prediction power without habit variables is much greater when predicting location of the first 

tow than for subsequent tows suggesting that considering past choices is less important for predicting 

behavior within the trip.  

Welfare measures also change with elimination of habit variables. Changes are relatively small for 

grid model welfare estimates other than for models where expected revenue parameters are not close to 

zero and not significant. Welfare estimates for traditional models exhibit much larger changes which is 

consistent with the much higher volatility and wider bounds of those estimates due to the revenue 

coefficients being close to zero and often insignificant. For both grid and traditional welfare estimates 

changes are much smaller for first tows. This is due to the fact that expected revenue parameters tend to 

be larger and more significant and more robust to model specification. 

For the mixed logit models we again find that mean coefficients for distance and expected revenue 
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generally exhibit only small changes in magnitude and levels of statistical significance are mostly 

unaffected. In many, but not all, cases the expected revenue coefficients from the mixed logit model are 

smaller relative to the base model but this effect is not consistent across fleets. For most fleets the 

standard deviation of the coefficients on expected revenue and distance for the first tows is not 

statistically significant suggesting there in not significant heterogeneity in these coefficients. However, 

the coefficients for tows other than the first tow often do exhibit statistically significant variation 

suggesting heterogeneity across vessels. Likelihood ratio tests support the mixed logit model over the 

base model in terms of overall fit. However, prediction scores for the mixed logit models are slightly 

lower than for the base model in almost all cases. It is not clear why this would be the case but the result 

is consistent. Welfare estimates for our policy experiments modeling the cost of closures tend to be more 

erratic with wider bounds as compared to the base model. Welfare estimates for tows other than the first 

tow, which were almost always positive for the base conditional logit grid model, are sometimes negative 

for the mixed logit model and have wider bounds. This is consistent with the smaller coefficient (closer to 

zero) which can cause welfare estimates to be negative when draws of the revenue coefficient are 

negative in some policy simulations. Given that our main focus is on comparing the grid and traditional 

choice formulation opt to use our simpler conditional logit model with habit variables in the main paper 

and present the mixed logit results in an appendix.  In particular, with the prediction scores and policy 

experiments and welfare estimates this base model provides a more clear illustration of how negative bias 

in the revenue coefficients can impact ability to predict choice and welfare impacts. We note that Smith 

(2005) cautions more against modeling preference heterogeneity in isolation (e.g. with random 

parameters) than against modeling state dependence in isolation. 

6. Conclusions 

Spatial discrete choice modeling is challenging because it requires the proper specification of the 

subjects’ consideration set to obtain unbiased parameter estimates. Given the breadth of its use within the 

environmental economics literature, developing estimation methods that can more accurately capture the 

underlying choice structure will advance the application of these methods. Furthermore, with fine scale 

geo-spatial data becoming more readily available it is imperative that we develop estimation tools that are 

capable of meeting this growth in data availability when individuals are likely to be aware of alternatives 

at very fine spatial resolutions. This research expands the discrete choice literature by developing a grid-

point choice structure that is not fettered by the traditional and arbitrary aggregation of space into large 

areas used extensively in the literature to facilitate estimation.  

To investigate the properties of our grid-point choice model we compare it to the traditional 

choice model that arbitrarily divides space into pre-specified grids using MC analysis. The results from 
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the MC suggests that the grid-point model may perform the best if the objective is accurate estimates of 

coefficients. This might be the case when they are to be used to estimates the costs of a closure for 

example. The MC showed, however, that a variety of factors can influence the absolute and relative 

performance of these models. Some of these may be within the control of the analyst, e.g. the size of 

discrete areas for a traditional model. The study suggests the advantage of the grid-point model will 

diminish as the size of discrete areas for the traditional model is reduced (i.e. defined on a finer scale). For 

other factors that affect the relative performance of the models such as the sizes and number desirable 

choices and how quickly utility changes over space (determined in our MC by the clumps and diffusion 

rate parameters), the analyst may have some information about them and these might help inform model 

choice.  There may be circumstances where the traditional choice set model outperforms the grid-point 

model. Those conditions are what we have defined as relatively spatially homogeneous choice structures, 

in which the arbitrary gridding of space does not impact the analysis. 

The MC analysis provided less clear results with regards to predictive accuracy which in some 

cases is the primary focus of an application (e.g. if it is to be used to predict how changes in regulations 

affect effort distribution). However, unlike coefficient bias, where true values are unknown, we are able 

to evaluate predictive accuracy empirically over actual data. Our empirical application suggested a clear 

advantage for the grid-point models over the traditional model in terms of predictive accuracy.  

Our application focused on a fishery where both the physical geography and the resource is 

known at a very fine scale.  The econometric method effectively builds a localized surface around 

sampled points for characterizing fishing quality.  In constructing this surface, we find that a radius of 3 

miles proved to be the best alternative for including past tows for calculating expected revenue. A short 

radius around sample points such as this greatly reduces the number of observations that can be used to 

calculate expected revenue for a given location choice, but nevertheless appears to provide a more 

accurate signal when the information is available which is consistent with the patchy and uneven spatial 

distribution of areas driving catch in the fishery. Even though the traditional model implements areas 

shaped according to bathymetry which is known to drive resource distributions, it seems clear that the 

artificial aggregation of space based on geographic boundaries (in our case latitude cutoffs and depth 

zones) masked underlying heterogeneity that drives fishers’ decisions. Many fisheries and other choice 

settings likely also exhibit fine scale heterogeneity and our point-based considerations sets may provide 

more effective strategies for modeling choice in these situations. 
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Figure 1: Illustration of grid point-based choice set formation. 
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Figure 2: Graphical illustration of the resource spatial distribution, /���
0 , for alternative clumps and spatial 

diffusion rates, +, of the resource. 
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Figure 3: Box plots of bias of in revenue and distance coefficients from Monte Carlo analysis. 
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Figure 4: (a) Sample of a simple geography; (b) Sample of complicated geography. 
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Table 1: Parameters utilized in our data generation process for the Monte Carlo. A full combinatorial of 
data parameters was constructed resulting on 864 unique data set parameters.  

Model Variable Settings 

Number of Clumps (seeded locations on fish surface) 64, 128, 256 

Diffusion Rate, + 0.05, 0.075, 0.10, 0.20 

Standard Deviation of Error Added to Expected revenue, -3 10, 20 

Standard Deviation of Error Added to Actual Catch, -4 10, 20, 40 

Distance Scale (scales relative distance between grid points) 1, 3 

GEV Scale Factor, 7 20, 30 

Aggregation Factor (number of cells in discrete areas for traditional model 16, 64, 256 
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Table 2: Average parameter estimates and mean bias across the Monte Carlo parameterizations for the 
revenue coefficient (left column), �0, and the distance coefficient (right column), �2. The first row of 
each section contains the results for GEV scale parameter of 20 (7 = 20) and the second row contains the 

results for the GEV scale parameter of 30 (7 = 30). Bias is defined as '�� − �) where �� is the estimated 
coefficient and � is the true parameter estimate. The true parameter estimate, �, is the coefficient within 
the data generation process divided by the GEV scale parameter, 7. Standard deviations of parameters 
averages and bias are in parentheses. Note that standard deviations reflect variation if scores across MC 
parameterizations. 
 

  Grid Traditional Grid Traditional 

GEV Scale Average Coefficient Estimate for β_1 Average Coefficient Estimate for β_2 
 

 

0.034 (0.013) 0.026 (0.011) -0.050 (0.006) -0.044 (0.007) 

  0.023 (0.008) 0.017 (0.007) -0.036 (0.003) -0.032 (0.004) 

GEV Scale Average Bias B_1 Average Bias B_2 
 

 

-0.016 (0.013) -0.024 (0.011) -0.000 (0.005) 0.006 (0.007) 

 -0.011 (0.008) -0.016 (0.007) -0.003 (0.003) 0.001 (0.004) 

  Average Percent Bias for β_1 Average Percent Bias for β_2 
 

 

-33%  -47%  0%  11%  

 -29%   -48%   -8%   2%   
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Table 3: Differences in the absolute value of bias between the Grid and Traditional models for the 
revenue coefficient �0 (left two columns) and for the distance coefficient  �2 (right two columns). The 
dependent variable is mean difference in the absolute value of bias between the two models (Grid bias – 
Traditional bias). For both coefficients results are shown for the GEV scale parameter of 20 (7 = 20) and 
the GEV scale parameter of 30 (7 = 30). A negative regression coefficient indicates that this MC variable 
increases absolute bias relatively more for the traditional model than the grid model (i.e., favoring the grid 
model) and a positive coefficient indicates the opposite. 
 
 

Monte Carlo Variable Grid-Traditional    Grid-Traditional  

          

Constant -0.007 *** -0.005 *** 0.003 *** 0.002 *** 

Clump 128 -0.006 *** -0.005 *** 0.000   0.000   

Clump 256 -0.002 *** -0.001 ** -0.001 * 0.000   

Diffusion 0.075 0.000   0.000   0.001 * 0.001 * 

Diffusion 0.10 0.002 *** 0.000   0.000   0.001 *** 

Diffusion 0.20 0.007 *** 0.004 *** 0.000   0.002 *** 

Distance Scale 3 -0.001   0.000   -0.004 *** -0.003 *** 

Std. Dev. Exp. Rev. 20 0.000   0.000   0.000   0.000   

Std. Dev. Act. Rev. 20 0.003 *** 0.002 *** 0.000   0.000   

Std. Dev. Act. Rev. 40 0.009 *** 0.006 *** 0.001 ** 0.000   

Agg. Factor 64 -0.003 *** -0.004 *** -0.002 *** 0.000   

Agg. Factor 256 -0.005 *** -0.005 *** -0.008 *** -0.002 *** 

R-square 0.65   0.48   0.58   0.55   
 
* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 

 
 

  



38 

 

Table 4: Average prediction and distance performance scores for different models average across all 
Monte Carlo parameterizations. Standard deviations of scores are in parentheses. Note that standard 
deviations reflect variation if scores across MC parameterizations. 

Model CP CPS PM D 

Grid-point 0.24 (0.17) 0.26 (0.18) 0.22 (0.16) 24.6 (10.2) 

Traditional 0.25 (0.18) 0.25 (0.18) 0.17 (0.15) 27.1 (10.1) 
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Table 5 Determinants of the differences in the prediction metrics for the two models broken down by the 
data generation parameters. The dependent variable is mean difference prediction metric between models 
(Grid score – Traditional score). A positive coefficient indicates that this MC variable increases the score 
relatively more for the grid model than the traditional model. Since high scores are better for CP, CPS, 
and PM, a positive coefficient means that variable tend to favor the grid model. For the distance score the 
opposite is true. 

Monte Carlo Variable CP Scores CPS Scores PM Scores 
Distance 
Scores 

Constant -0.042 *** 0.015 *** 0.015 *** -1.372 *** 

Clump 128 0.003   -0.004 *** 0.002   1.621 *** 

Clump 256 0.015 *** -0.008 *** 0.000   2.290 *** 

Diffusion 0.075 0.013 *** 0.001   0.016 *** -0.530 ** 

Diffusion 0.10 0.016 *** 0.003   0.013 *** -0.372   

Diffusion 0.20 0.018 *** -0.002   0.012 *** 0.296   

GEV Scale 30 0.022 *** -0.007 *** 0.008 *** 1.457 *** 

Distance Scale 3 0.011 *** 0.005 *** 0.017 *** -2.196 *** 

Std. Dev. Exp. Rev. 20 0.002   0.001   0.003 * 0.018   

Std. Dev. Act. Rev. 20 -0.003   0.000   -0.002   0.124   

Std. Dev. Act. Rev. 40 -0.011 *** -0.001   -0.003   0.428 ** 

Agg. Factor 64 0.006 *** 0.004 *** 0.010 *** -1.888 *** 

Agg. Factor 256 0.016 *** 0.009 *** 0.028 *** -3.530 *** 

R-square 0.24   0.16   0.19   0.51   

 
* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 
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Table 6. Fleets and Fleet Groups Modeled 

Fleet  
 Vessel 
Count State Major Ports 

1 7 CA Moss Landing & San Francisco 

2 6 CA Fort Bragg 

3 9 CA Eureka  

4 6 OR Crescent City & Brookings 

5 12 OR Charleston 

6 8 OR Newport 

7 18 OR Astoria 

8 5 WA Ilwaco & Westport 

 

  



41 

 

Table 7.  Independent Variables for RUM Model 
 

Variable Name Description 

&��
cdef   Distance (in miles) to Tow Choice Location  

&��
cdefp�Jm� Distance (in miles) to Tow Choice Location for 1st Tow of Trip 

Ofqfdjf Expected Revenues (in $100)  

Ofqfdjfp�Jm� Expected Revenues (in $100) for 1st Tow of Trip 

&jkl�mm�no (=1) if no observations in support of Expected Revenue calculation 

gc��
hR (=1) if vessel has previously fished within 5 miles of site within 30 days 

gc��
A�iJ (=1) if vessel has previously fished within 5 miles of site in 30 day of 
preceding year 
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Table 8: Parameter estimates for the eight fleets estimated within the Pacific groundfish fishery. The top panel contains the results from the grid-
point model. The bottom panel contains the results from the traditional choice set model. 
 
 

  Grid-point Model 

Parameter Fleet 1   Fleet 2   Fleet 3   Fleet 4   Fleet 5   Fleet 6   Fleet 7   Fleet 8   

Distance -0.119 *** -0.084 *** -0.077 *** -0.056 *** -0.086 *** -0.105 *** -0.112 *** -0.098 *** 

DistanceFirst -0.032 *** -0.023 *** -0.053 *** -0.063 *** -0.051 *** -0.027 *** -0.017 *** -0.024 *** 

Revenue 0.027 *** 0.004 * 0.004 * 0.012 *** 0.009 *** 0.009 ** 0.017 *** 0.008 ** 

Revenue_First 0.054 *** 0.017 *** 0.012 *** 0.012 ** 0.033 *** 0.025 *** 0.037 *** 0.028 *** 

Dum_Missing 0.168   -0.756 *** -0.789 *** -0.702 *** -0.478 *** -0.984 *** -0.934 *** -0.232   

Habit_30 2.717 *** 1.035 *** 1.404 *** 1.110 *** 1.633 *** 1.033 *** 1.546 *** 1.427 *** 

Habit_Year 1.496 *** 0.774 *** 1.000 *** 0.745 *** 1.149 *** 0.996 *** 0.842 *** 1.082 *** 

  Traditional Model 

Parameter Fleet 1   Fleet 2   Fleet 3   Fleet 4   Fleet 5   Fleet 6   Fleet 7   Fleet 8   

Distance -0.133 *** -0.076 *** -0.074 *** -0.050 *** -0.092 *** -0.096 *** -0.113 *** -0.088 *** 

DistanceFirst -0.043 *** -0.030 *** -0.052 *** -0.056 *** -0.067 *** -0.029 *** -0.024 *** -0.016 *** 

Revenue 0.006   0.001   0.000   0.001   -0.004 * 0.002   0.003 ** 0.007 *** 

Revenue_First 0.014 * 0.011 *** 0.014 *** 0.007   0.025 *** 0.020 *** 0.017 *** 0.022 *** 

Dum_Missing -1.314 *** -1.032 *** -1.410 *** -1.034 *** -1.560 *** -1.035 *** -1.572 *** -0.982 *** 

Habit_30 0.551 *** 0.027   0.319 *** 0.266 ** 0.193 ** 0.350 ** 0.526 *** 0.262 ** 

Habit_Year 1.280 *** 0.843 *** 0.459 *** 1.109 *** 0.594 *** 0.581 *** 0.521 *** 0.649 *** 

Observations 1451   1185   1496   895   2148   921   7084   1543   

 
* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically significant at the 99% level. 



43 

 

Table 9: Predictive accuracy measures for the Pacific groundfish application for tows other than the first 
tow of a trip 
 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

 Correct Prediction (CP) 

Grid-point 0.58 0.23 0.22 0.14 0.27 0.23 0.34 0.30 

Traditional 0.21 0.10 0.12 0.15 0.10 0.17 0.06 0.20 

 Correct Prediction Summed (CPS) 

Grid-point 0.60 0.25 0.26 0.19 0.31 0.24 0.37 0.25 

Traditional 0.21 0.10 0.12 0.15 0.10 0.17 0.06 0.20 

 Probability Mass (PM) 

Grid-point 0.46 0.12 0.15 0.11 0.18 0.15 0.24 0.17 

Traditional 0.15 0.04 0.06 0.07 0.06 0.09 0.04 0.10 

 Distance (D) 

Grid-point 9.9 15.0 14.2 18.2 13.2 14.5 13.6 12.4 

Traditional 29.9 40.1 38.7 25.8 27.6 28.0 56.4 33.6 
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Table 10: Predictive accuracy measures for the Pacific groundfish application on the first tow in the trip 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

 Correct Prediction (CP) 

Grid-point 0.43 0.11 0.23 0.21 0.27 0.14 0.13 0.22 

Traditional 0.21 0.14 0.13 0.17 0.12 0.26 0.07 0.21 

 Correct Prediction Summed (CPS) 

Grid-point 0.50 0.11 0.25 0.25 0.34 0.16 0.17 0.19 

Traditional 0.21 0.14 0.13 0.17 0.12 0.26 0.07 0.21 

 Probability Mass (PM) 

Grid-point 0.29 0.06 0.12 0.11 0.13 0.07 0.07 0.08 

Traditional 0.15 0.05 0.07 0.09 0.07 0.11 0.05 0.10 

 Distance (D) 

Grid-point 17.5 28.1 15.9 17.7 15.0 32.3 36.5 32.6 

Traditional 27.9 31.5 36.9 21.9 22.2 20.7 51.6 27.2 
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Table 11: Welfare estimates for closures for the Pacific groundfish for tows other than the first tow 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

  50-100 Fathom Closure - Grid Model 

Lower Bound 32.3 41.2 -22.0 2.4 48.3 11.9 28.7 24.7 

Mean 33.9 65.5 43.4 2.5 52.9 21.9 29.2 43.6 

Upper Bound 35.4 89.8 108.9 2.7 57.5 31.8 29.7 62.5 

 50-100 Fathom Closure - Traditional Model 

Lower Bound 71.8 -479.0 -59.1 -4.9 -219.5 -3371.4 31.3 17.9 

Mean 158.9 -91.6 0.0 6.9 -120.9 3400.4 67.3 19.7 

Upper Bound 246.0 295.8 59.1 18.7 -22.3 10172.2 103.2 21.5 

 200-250 Fathom Closure - Grid Model 

Lower Bound 0.6 22.6 -43.3 9.0 11.1 17.9 11.4 7.2 

Mean 0.7 34.8 85.4 9.5 12.1 32.5 11.6 12.7 

Upper Bound 0.7 47.0 214.1 10.0 13.0 47.1 11.8 18.2 

 200-250 Fathom Closure - Traditional Model 

Lower Bound 6.1 -566.1 -284.5 -53.4 -204.3 -8996.6 26.9 31.2 

Mean 13.3 -106.1 -3.9 51.1 -111.4 9075.2 58.2 34.2 

Upper Bound 20.5 354.0 276.6 155.6 -18.5 27147.1 89.5 37.2 
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Table 12: Welfare estimates for closures for the Pacific groundfish on the first tow of trip 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

  50-100 Fathom Closure - Grid Model 

Lower Bound 7.0 15.6 6.8 2.7 11.4 7.3 10.1 9.9 

Mean 7.3 16.5 7.7 6.3 11.8 7.8 10.3 10.6 

Upper Bound 7.6 17.4 8.5 10.0 12.2 8.3 10.5 11.2 

 50-100 Fathom Closure - Traditional Model 

Lower Bound 19.6 13.4 3.4 2.3 6.8 4.3 13.7 5.4 

Mean 44.0 15.5 3.7 5.7 7.0 4.8 14.3 6.9 

Upper Bound 68.4 17.5 3.9 9.2 7.2 5.3 14.9 8.3 

 200-250 Fathom Closure - Grid Model 

Lower Bound 0.2 7.0 11.1 5.5 2.5 10.8 4.2 3.8 

Mean 0.2 7.3 12.3 11.0 2.6 11.4 4.3 4.0 

Upper Bound 0.2 7.7 13.5 16.4 2.6 12.0 4.3 4.3 

 200-250 Fathom Closure - Traditional Model 

Lower Bound 1.5 16.5 16.5 17.0 6.9 11.5 13.5 8.1 

Mean 3.5 19.0 17.6 43.2 7.1 12.9 14.1 10.0 

Upper Bound 5.4 21.5 18.7 69.5 7.3 14.2 14.6 12.0 
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Supplementary Online Appendix A: Further Results from Monte Carlo Analysis 

 

Bias in Parameter Estimates 

 

Both the grid and traditional models tend to have negative bias in estimating the expected revenue 

parameter (Figure A1). The parameter is positive and negative bias shrinks it toward zero. Negative bias 

increases with a higher aggregation level (fewer, larger discrete areas) but the grid model is unaffected by 

this (Table A1). Both models are able to estimate the “true” parameter for distance fairly accurately 

across a range of MC model parameterizations (Figure A1). The traditional model tends to exhibit 

positive bias in the distance parameter with higher aggregation levels while the bias of the distance 

parameter is negative for the grid model (Figure A1). Note that the distance parameter is negative so 

positive bias shrinks it toward zero (i.e. reducing its absolute value). Higher aggregation factors do not 

affect the grid-point model but increases positive bias for the traditional model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1: Average expected revenue and distance coefficients for grid and traditional models for 
different aggregation factors and scale parameters.  “True” parameters values are 0.05 (scale=20) and 
0.033 (scale=30) for the revenue coefficient and -0.05 (scale=20) and -0.033 (scale=30) for the distance 
coefficient.  
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The bias in the expected revenue parameter varies substantially across replications with different 
randomly generated fish surfaces even for fixed set of MC variables. This is demonstrated by considering 
bias from 100 replicates with a base case set of MC variables. Bias tends to move in synchrony for the 
different models preserving relative bias across models even as absolute bias varies (Figure A2). 
 
 
 

 

 

 

 

 

 

 

 

Figure A2: Bias in expected revenue parameter for grid-point and traditional models over 100 replications 

with a single set of MCl parameters. (Clumps=128, Diffusion=0.750, GEV scale=20, Distance Scale=1, 

Std. Dev. Exp. Revenue=10, Std.Dev. Actual Revenue=20, Aggregation Factor=64) 

 

The determinants of the revenue parameter bias are shown in Table A1, based on regression of bias on 

dummy variables for the parameters varied in the Monte Carlo experimental design. Separate regression of 

bias are run for the two levels of the GEV scale parameters since absolute values of parameters and 

consequently bias differ on average. Since bias in the revenue parameter is negative (it underestimates the 

true parameter) a negative coefficient in these regressions indicates a larger absolute bias. Bias becomes 

more negative (larger in absolute value) as the number of clumps (CL) increases across both the estimators, 

and the magnitude of the change in bias is consistent across the estimators as well. A higher number of 

clumps results in a patchier resource surface. The highest diffusion rate, + < 0.20, increases the absolute 

bias across both estimators. The impact is significantly smaller on the traditional choice set model which 

masks fine-scale heterogeneity in the resource. The distance scale parameter, which scales the relative 

distance between points increases negative bias for both models, particularly when GEV scale is 30. The 

standard deviation in expected revenues has a marginal impact on some of the estimators but the magnitude 

of the effects is also small. Increasing the standard deviation in the actual revenues (which creates a gap 

between the expected revenues that drove the choice and the realized revenues that are used to develop 

expectations for choices in the RUM model) increases the absolute bias in the revenue parameter across 

both estimators. However, it has a greater impact on the grid-point estimator. The aggregation factor only 

impacts the bias in the traditional choice set model, increasing the absolute bias as the grids become coarser. 

The grid size is not relevant to parameter estimates for the grid model though it does affect the prediction 

metrics since prediction for both models is done for the coarser areas of the traditional model.  
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Table A1: Factors influencing the bias for the revenue parameter, �0. The dependent variable is the mean 
bias observed in each of the 864 Monte Carlos  (per scale parameter) with the data generation parameters 
serving as independent variables including choice sample size of 100 vs. the base case of 50. The left 
column contains the results for the GEV scale parameter of 20 (7 = 20) and the right column possesses 
the results for the GEV scale parameter of 30 (7 = 30). A negative coefficient indicates the positive 
revenue coefficient moves closer to zero (greater absolute bias). 

 

Monte Carlo Variable Grid Point 
 

Traditional 

  

 

 

 

 

 

 

 

Constant 0.006 *** 0.004 *** -0.003 *** -0.002 *** 

Clump 128 -0.009 *** -0.006 *** -0.015 *** -0.011 *** 

Clump 256 -0.018 *** -0.011 *** -0.018 *** -0.012 *** 

Diffusion 0.075 0.000    0.001   0.000   0.000   

Diffusion 0.10 0.000    0.000   0.001   -0.001   

Diffusion 0.20 -0.011 *** -0.007 *** -0.004 *** -0.002 ** 

Distance Scale 3 -0.001   -0.008 *** -0.001 *** -0.008 *** 

Std. Dev. Exp. Rev. 20 -0.001 *** 0.000   -0.001   0.000   

Std. Dev. Act. Rev. 20 -0.008 *** -0.005 *** -0.004 *** -0.002 *** 

Std. Dev. Act. Rev. 40 -0.021 *** -0.013 *** -0.012 *** -0.007 *** 

Agg. Factor 64 0.000   0.000   -0.003 *** -0.004 *** 

Agg. Factor 256 0.000   0.000   -0.005 *** -0.005 *** 

R-square 0.92   0.65   0.84   0.55   
 

 

* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 
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The bias determinants for the distance parameter, �2, are shown in Table A2 and broken down by the two 

GEV scale parameters. Recall that average bias of the distance coefficient is close to zero or slightly 

negative for the grid model on average and positive for the traditional model on average. Thus a positive 

coefficient for the grid model indicates improved performance (lower absolute bias) while the opposite is 

true for the traditional model. However, bias for both models can be either positive or negative for some 

combinations of variables in contrast to bias the revenue parameter which is almost always negative for 

both models. The effects of the higher clumps (CL) value is to increase the negative parameter bias for the 

grid model, but for the traditional model the effect varies with the scale parameter. The diffusion rates also 

increases negative bias for the grid model but reduces the positive bias of the traditional model for the 

highest diffusion rate. The higher distance scale parameter reduces the negative bias for the grid model but 

increases the positive bias for the traditional model. The standard deviation in expected revenues has a very 

small effect on both models. The higher standard deviation in the actual revenues (40) increases the negative 

bias for the grid model but actually reduces absolute bias for the traditional model. Again the magnitude is 

small. Increasing the aggregation factor increases the bias (shrinks the negative coefficient further toward 

zero) in the traditional choice set model but has no impact on the grid model. 

Table A2: Factors influencing the bias for the distance parameter, �2. The dependent variable is the mean 
bias observed in each of the 864 Monte Carlos (per scale parameter) with the data generation parameters 
serving as independent variables including choice sample size of 100 vs. the base case of 50.. The left 
column contains the results for the GEV scale parameter of 20 (7 = 20) and the right column possesses 

the results for the GEV scale parameter of 30 (7 = 30). A positive coefficient indicates the negative 
distance coefficient moves closer to zero which decreases absolute bias for the grid model but increases it 
for the traditional model. 

 

Monte Carlo Variable Grid Point 
 

Traditional 

  

 

 

 

 

 

 

 

Constant 0.007 *** -0.001 *** 0.002 *** -0.004 *** 

Clump 128 -0.009 *** -0.001 *** -0.006 *** 0.000   

Clump 256 -0.009 *** -0.001 *** -0.005 *** 0.001 *** 

Diffusion 0.075 -0.001 *** -0.003 *** 0.000   -0.002 *** 

Diffusion 0.10 -0.003 *** -0.004 *** 0.000   -0.002 *** 

Diffusion 0.20 -0.006 *** -0.004 *** -0.001 * -0.001 *** 

Distance Scale 3 0.005 *** 0.001 *** 0.008 *** 0.005 *** 

Std. Dev. Exp. Rev. 20 0.000   0.000 ** 0.001 * 0.000 *** 

Std. Dev. Act. Rev. 20 0.000   0.000   -0.001   0.000   

Std. Dev. Act. Rev. 40 -0.002 *** -0.001 *** -0.002 *** -0.001 *** 

Agg. Factor 64 0.000   0.000   0.003 *** 0.002 *** 

Agg. Factor 256 0.000   0.000   0.011 *** 0.006 *** 

R-square 0.31   0.77   0.82   0.88   
 

* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 
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Choice Prediction 

 

Prediction performance for both models improve as the aggregation factor is increased simply because 

there are fewer choices to predict among (Figure A3 and Tables A3-A6). In contrast, the prediction 

accuracy of both models declines as the number of clumps is increased. Prediction performance also 

declines as the diffusion rate is increased and with the higher GEV scale variable. The effect of GEV 

scale is intuitive since the higher scale variable tends to tie revenues less closely to the areas with higher 

expected revenue making it harder to predict choices based on expected revenue.  Higher error in 

expected revenue, while it does negatively impact prediction performance, has a relatively small effect. 

Overall this suggests that these models are both relatively robust to noise in specifications of expected 

revenue in terms of their ability to predict choices.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3: Average results for the different prediction metrics with different aggregation factors with 
results averaged over all other MC variables and replications. 
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Table A3: Determinants of Correct Predicted (CP) score broken down by the data generation parameters.  

Monte Carlo Variable Grid Point Traditional 

Constant 0.311 ***   0.352 
 

*** 

Clump 128 -0.152 *** -0.156 *** 

Clump 256 -0.197 *** -0.212 *** 

Diffusion 0.075 0.035 *** 0.022 ** 

Diffusion 0.10 0.003   -0.014   

Diffusion 0.20 -0.067 *** -0.085 *** 

GEV Scale 30 -0.163 *** -0.185 *** 

Distance Scale 3 0.066 ***  0.055 *** 

Std. Dev. Exp. Rev. 20 -0.005   -0.007   

Std. Dev. Act. Rev. 20 -0.006   -0.003   

Std. Dev. Act. Rev. 40 -0.022 *** -0.011   

Agg. Factor 64 0.045 ***  0.039 *** 

Agg. Factor 256 0.202 ***  0.186 *** 

R-square 0.711   0.69   
* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 

 

Table A4: Determinants of Correct Predicted Summed (CPS) score broken down by the data generation 
parameters. 

Monte Carlo Variable Grid Point Traditional 

Constant 0.368 ***    0.352 
 

*** 

Clump 128 -0.160 *** -0.156 *** 

Clump 256 -0.220 *** -0.212 *** 

Diffusion 0.075 0.023 ** 0.022 ** 

Diffusion 0.10 -0.011   -0.014   

Diffusion 0.20 -0.087 *** -0.085 *** 

GEV Scale 30 -0.193 *** -0.185 *** 

Distance Scale 3 0.060 *** 0.055 *** 

Std. Dev. Exp. Rev. 20 -0.006   -0.007   

Std. Dev. Act. Rev. 20 -0.003   -0.003   

Std. Dev. Act. Rev. 40 -0.012   -0.011   

Agg. Factor 64 0.043 *** 0.039 *** 

Agg. Factor 256 0.195 *** 0.186 *** 

R-square 0.90   0.88   

 

 

* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 
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Table A5: Determinants of Probability Mass (PM) score broken down by the data generation parameters. 

Monte Carlo Variable Grid Point Traditional 

Constant 0.247 ***    0.232 
 

*** 

Clump 128 -0.119 *** -0.121 *** 

Clump 256 -0.166 *** -0.165 *** 

Diffusion 0.075 0.036 *** 0.021 ** 

Diffusion 0.10 0.015 * 0.001   

Diffusion 0.20 -0.042 *** -0.054 *** 

GEV Scale 30 -0.139 *** -0.147 *** 

Distance Scale 3 0.073 *** 0.056 *** 

Std. Dev. Exp. Rev. 20 -0.002   -0.006   

Std. Dev. Act. Rev. 20 -0.006   -0.004   

Std. Dev. Act. Rev. 40 -0.017 ** -0.014 * 

Agg. Factor 64 0.045 *** 0.035 *** 

Agg. Factor 256 0.206 *** 0.178 *** 

R-square 0.75   0.68   
 

* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 

Table A6: Determinants of Distance (D) score broken down by the data generation parameters. 

 

Monte Carlo Variable Grid Point Traditional 

Constant 10.721 ***  12.093 
 

*** 

Clump 128 6.231 *** 4.609 *** 

Clump 256 8.271 *** 5.982 *** 

Diffusion 0.075 -3.986 *** -3.455 *** 

Diffusion 0.10 -3.749 *** -3.377 *** 

Diffusion 0.20 -1.166 * -1.462 *** 

GEV Scale 30 10.124 *** 8.668 *** 

Distance Scale 3 13.276 *** 15.471 *** 

Std. Dev. Exp. Rev. 20 0.185   0.167   

Std. Dev. Act. Rev. 20 0.058   -0.066   

Std. Dev. Act. Rev. 40 0.290   -0.137   

Agg. Factor 64 0.004   1.893 *** 

Agg. Factor 256 -0.001   3.529 *** 

R-square 0.65   0.77   
 

* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically 
significant at the 99% level. 
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Supplementary Online Appendix B: Model Comparison of Grid RUM Models with Alternative 

Distances and Time Lags Used to Create Expected Revenue 

 

This contains results for the multiple runs of the empirical RUM Grid models with varying radius and 
time lag window used to construct expected revenue. Results support the use of the smallest radius (3 
miles) and a 30 day time window. 

 
Table B1: Parameter Settings for Models Considered  

 

Model  Radius Time Window (days) 

1  5 301 

2  5 14 

3  3 30 

4  3 14 

5  10 30 

6  10 14 

 

 
Table B2: Log-likelihoods for Alternative Models 
 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 8 Fleet 8 

Model 1 -2,725 -3,220 -3,425 -2,375 -5,055 -2,057 -11,716 -3,123 

Model 2 -2,876 -3,270 -3,581 -2,407 -5,335 -2,090 -12,049 -3,184 

Model 3 -2,383 -3,100 -3,298 -2,283 -4,943 -1,992 -11,064 -3,051 

Model 4 -2,595 -3,209 -3,517 -2,388 -5,220 -2,093 -11,662 -3,098 

Model 5 -2,906 -3,320 -3,541 -2,493 -5,191 -2,100 -12,534 -3,266 

Model 6 -3,091 -3,366 -3,635 -2,504 -5,388 -2,152 -12,930 -3,301 
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Supplementary Online Appendix C: Charts of Traditional Areas with Grid Points Overlaid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C1: Traditional Areas and Grid Points – Full Extent 
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Figure C2: Traditional Areas and Grid Points – Northern Ports  
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Figure C3: Traditional Areas and Grid Points – North Central Ports 
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Figure C3: Traditional Areas and Grid Points – South Central Ports 

 

 

 

  



59 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C3: Traditional Areas and Grid Points – Southern Ports 

  



60 

 

Supplementary Online Appendix D: Results From Models Without Habit Variables and Mixed Logit 

Models with Normally Distributed Random Parameters 

 

 

Tables D1-D10 provide RUM model coefficient estimates, predictive accuracy measures, and welfare 

estimates for RUM models with a standard conditional logit estimation but with “habit” variables 

removed from the utility function and for RUM models estimated with a mixed logit model with normally 

distributed random parameters.  

For models run without habit variables, coefficients on distance and expected revenue generally 

exhibit only small changes in magnitude and levels of statistical significance are unaffected in all but a 

few cases. Likelihood ratio tests reject eliminating the habit variables, though as we note below they do 

support allowing for heterogeneity in the utility function for some parameters. Predictive accuracy 

generally declines with elimination of habit variables as expected but the degree of decline varies by fleet. 

Decline in prediction power without habit variables is much greater when predicting location of the first 

tow than for subsequent tows suggesting that considering past choices is less important for predicting 

behavior within the trip.  

Welfare measures also change with elimination of habit variables. Changes are relatively small 

for grid model welfare estimates other than for models where expected revenue parameters are not close 

to zero and not significant. Welfare estimates for traditional models exhibit much larger changes which is 

consistent with the much higher volatility and wider bounds of those estimates due to the revenue 

coefficients being close to zero and often insignificant. For both grid and traditional welfare estimates 

changes are much smaller for first tows. This is due to the fact that expected revenue parameters tend to 

be larger and more significant and more robust to model specification. 

For the mixed logit models we again find that mean coefficients for distance and expected revenue 

generally exhibit only small changes in magnitude and levels of statistical significance are mostly 

unaffected. In many, but not all, cases the expected revenue coefficients from the mixed logit model are 

smaller relative to the base model but this effect is not consistent across fleets. For most fleets the 

standard deviation of the coefficients on expected revenue and distance for the first tows is not 

statistically significant suggesting there in not significant heterogeneity in these coefficients. However, 

the coefficients for tows other than the first tow often do exhibit statistically significant variation 

suggesting heterogeneity across vessels. Likelihood ratio tests support the mixed logit model over the 

base model in terms of overall fit. However, prediction scores for the mixed logit models are slightly 

lower than for the base model in almost all cases. It is not clear why this would be the case but the result 

is consistent. Welfare estimates for our policy experiments modeling the cost of closures tend to be more 
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erratic with wider bounds as compared to the base model. Welfare estimates for tows other than the first 

tow, which were almost always positive for the base conditional logit grid model, are sometimes negative 

for the mixed logit model and have wider bounds. This is consistent with the smaller coefficient (closer to 

zero) which can cause welfare estimates to be negative when draws of the revenue coefficient are 

negative in some policy simulations. Given that our main focus is on comparing the grid and traditional 

choice formulation opt to use our simpler conditional logit model with habit variables in the main paper 

and present the mixed logit results in an appendix.  In particular, with the prediction scores and policy 

experiments and welfare estimates this base model provides a more clear illustration of how negative bias 

in the revenue coefficients can impact ability to predict choice and welfare impacts. We note that Smith 

(2005) cautions more against modeling preference heterogeneity in isolation (e.g. with random 

parameters) than against modeling state dependence in isolation. 
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Table D1a: Parameter estimates from RUM  model with no “Habit” variables for the eight fleets estimated within the Pacific groundfish fishery. 

The top panel contains the results from the grid-point model. The bottom panel contains the results from the traditional choice set model. 

  Grid-point Model 

Parameter Fleet 1   Fleet 2   Fleet 3   Fleet 4   Fleet 5   Fleet 6   Fleet 7   Fleet 8   

Distance -0.147 *** -0.087 *** -0.082 *** -0.058 *** -0.100 *** -0.108 *** -0.125 *** -0.103 *** 
DistanceFirst -0.043 *** -0.024 *** -0.055 *** -0.064 *** -0.052 *** -0.029 *** -0.019 *** -0.024 *** 
Revenue 0.016 *** 0.006 *** 0.005 ** 0.008 ** 0.008 *** 0.006 * 0.016 *** 0.013 *** 
Revenue_First 0.036 *** 0.017 *** 0.011 *** 0.005   0.028 *** 0.024 *** 0.033 *** 0.023 *** 
Dum_Missing -2.234 *** -1.310 *** -1.574 *** -1.563 *** -1.476 *** -1.747 *** -1.742 *** -1.501 *** 

  Traditional Model 

Parameter Fleet 1   Fleet 2   Fleet 3   Fleet 4   Fleet 5   Fleet 6   Fleet 7   Fleet 8   

Distance -0.140 *** -0.077 *** -0.075 *** -0.050 *** -0.093 *** -0.097 *** -0.117 *** -0.089 *** 
DistanceFirst -0.043 *** -0.030 *** -0.054 *** -0.056 *** -0.066 *** -0.028 *** -0.026 *** -0.016 *** 
Revenue -0.002   0.001   0.000   0.000   -0.004 * 0.004   0.006 *** 0.008 *** 
Revenue_First 0.009   0.012 *** 0.014 *** 0.007   0.024 *** 0.021 *** 0.017 *** 0.022 *** 
Dum_Missing -2.495 *** -1.480 *** -1.845 *** -1.819 *** -1.993 *** -1.636 *** -2.096 *** -1.533 *** 

Observations 1451   1185   1496   895   2148   921   7084   1543   

* indicates statistically significant at the 90% level; ** indicates statistically significant at the 95% level; *** indicates statistically significant at the 99% level. 

 

 

Table D1b: Likelihood scores and likelihood ratio tests comparing models with and without habit variables. 

 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

Grid No Habit -2910 -3202 -3539 -2376 -5464 -2055 -12216 -3188 

Grid Base Model -2348*** -3109*** -3303*** -2293*** -4927*** -1971*** -11136*** -3000*** 

Traditional No Habit -2892 -3669 -4344 -2703 -6198 -2418 -18705 -4203 

Traditional Base Model -2753*** -3625*** -4313*** -2658*** -6141*** -2401*** -18234*** -4156*** 
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*** indicates statistically significant at the 99% level for Likelihood Ratio Tests for base model vs restricted model with no habit variables 

 

Table D2a: Parameter estimates from mixed logit estimation of RUM model with normally distributed random parameters for the eight fleets 

estimated within the Pacific groundfish fishery. The top panel contains the results from the grid-point model. The bottom panel contains the results 

from the traditional choice set model. 

  Grid-point Model 

Parameter Fleet 1   Fleet 2   Fleet 3   Fleet 4   Fleet 5   Fleet 6   Fleet 7   Fleet 8   

Distance -0.138 *** -0.085 *** -0.081 *** -0.055 *** -0.094 *** -0.106 *** -0.128 *** -0.114 *** 

Distance SD 0.052 *** -0.019 *** -0.019 *** 0.002   0.036 *** -0.013   0.049 *** 0.042 *** 

DistanceFirst -0.033 *** -0.023 *** -0.058 *** -0.066 *** -0.051 *** -0.028 *** -0.017 *** -0.027 *** 

DistanceFirst SD 0.000   -0.001   0.017 ** -0.001   0.001   -0.001   0.000   -0.017 ** 

Revenue 0.036 *** 0.008 *** 0.005 * 0.010 *** 0.009 *** 0.008 * 0.017 *** 0.016 *** 

Revenue SD -0.028 * -0.004   0.008   -0.001   0.009   0.009   0.016 *** 0.031 *** 

Revenue_First 0.056 *** 0.021 *** 0.011 *** 0.010 * 0.034 *** 0.025 *** 0.037 *** 0.027 *** 

Revenue_First SD -0.003   0.000   -0.004   0.001   -0.003   -0.001   0.002   0.009   

Dum_Missing 0.262   -0.669 *** -0.844 *** -0.753 *** -0.515 *** -1.144 *** -1.030 *** -0.074   

Dum_Missing SD 0.252   0.524 *** 0.718 *** 0.594 *** 0.631 *** 0.197   -0.614 *** -0.530 * 

Habit_30 3.115 *** 1.005 *** 1.562 *** 1.083 *** 1.689 *** 0.866 *** 1.637 *** 1.478 *** 

Habit_30 SD 1.383 *** 1.045 *** 1.056 *** 0.835 *** 0.737 *** -0.698 *** -0.898 *** -0.764 *** 

Habit_Year 1.705 *** 0.699 *** 0.903 *** 0.741 *** 1.120 *** 1.091 *** 0.938 *** 1.116 *** 

Habit_Year SD 0.854 *** 0.811 *** 0.978 *** 0.504 ** 1.110 *** 0.765 *** 1.040 *** 0.464 *** 

 

Table D2b: Likelihood scores and likelihood ratio tests comparing conditional logit and mixed logit models. 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

Grid Mixed Logit -2310*** -3072*** -3255*** -2296 -4844*** -1985 -10839*** -2941*** 

Grid Base Model -2348 -3109 -3303 -2293 -4927 -1971 -11136 -3000 
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Traditional Mixed Logit -2715*** -3607*** -4281*** -2649** -6037*** -2377*** -17587*** -4115*** 

Traditional Base Model -2753 -3625 -4313 -2658 -6141 -2401 -18234 -4156 
 

** indicates statistically significant at the 95% level; *** indicates statistically significant at the 99% level for Likelihood Ratio Tests for mixed logit model over base model 
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Table D3: Predictive accuracy measures for tows other than the first tows for the Pacific groundfish RUM 
model with no “Habit” variables  

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

 
Correct Prediction (CP) 

Grid-point 0.50 0.20 0.19 0.13 0.24 0.22 0.34 0.29 

Traditional 0.19 0.10 0.11 0.14 0.10 0.16 0.05 0.19 
 

Correct Prediction Summed (CPS) 

Grid-point 0.52 0.24 0.19 0.17 0.27 0.20 0.34 0.23 

Traditional 0.19 0.10 0.11 0.14 0.10 0.16 0.05 0.19 
 

Probability Mass (PM) 

Grid-point 0.36 0.11 0.12 0.10 0.13 0.13 0.20 0.16 

Traditional 0.13 0.04 0.06 0.07 0.06 0.09 0.03 0.09 
 

Distance (D) 

Grid-point 11.5 15.0 14.3 18.2 13.9 14.5 13.9 12.8 

Traditional 30.3 40.3 38.7 25.9 27.8 28.1 56.7 33.7 

 

 

Table D3: Predictive accuracy measures for first tows for the Pacific groundfish RUM model with no 

“Habit” variables  

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

 
Correct Prediction (CP) 

Grid-point 0.16 0.04 0.11 0.20 0.16 0.12 0.05 0.14 

Traditional 0.20 0.13 0.12 0.15 0.12 0.24 0.06 0.22 
 

Correct Prediction Summed (CPS) 

Grid-point 0.21 0.09 0.13 0.25 0.23 0.12 0.08 0.14 

Traditional 0.20 0.13 0.12 0.15 0.12 0.24 0.06 0.22 
 

Probability Mass (PM) 

Grid-point 0.14 0.05 0.09 0.10 0.08 0.05 0.05 0.06 

Traditional 0.13 0.05 0.07 0.08 0.07 0.11 0.04 0.10 
 

Distance (D) 

Grid-point 25.5 30.1 17.4 17.7 20.0 34.1 43.3 37.2 

Traditional 28.5 31.7 36.9 22.5 22.3 20.7 52.0 27.4 
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Table D5: Predictive accuracy measures for tows other than the first tows for the Pacific groundfish mixed 
logit estimation of RUM model with normally distributed random parameters 

 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

 
Correct Prediction (CP) 

Grid-point 0.55 0.20 0.21 0.12 0.25 0.23 0.33 0.27 

Traditional 0.19 0.09 0.11 0.14 0.10 0.16 0.05 0.18 
 

Correct Prediction Summed (CPS) 

Grid-point 0.59 0.22 0.24 0.17 0.29 0.23 0.36 0.25 

Traditional 0.19 0.09 0.11 0.14 0.10 0.16 0.05 0.18 
 

Probability Mass (PM) 

Grid-point 0.46 0.12 0.15 0.10 0.18 0.15 0.24 0.17 

Traditional 0.15 0.04 0.06 0.07 0.06 0.09 0.04 0.10 
 

Distance (D) 

Grid-point 11.0 15.8 14.5 21.3 13.8 15.4 14.9 13.8 

Traditional 30.3 40.3 38.8 26.0 28.2 28.5 59.2 34.2 

 

 

Table D6: Predictive accuracy measures for first tows for the Pacific groundfish mixed logit estimation of 
RUM model with normally distributed random parameters 

 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

 
Correct Prediction (CP) 

Grid-point 0.40 0.09 0.20 0.18 0.26 0.14 0.13 0.18 

Traditional 0.20 0.12 0.12 0.17 0.11 0.24 0.07 0.20 
 

Correct Prediction Summed (CPS) 

Grid-point 0.47 0.10 0.23 0.22 0.30 0.16 0.17 0.17 

Traditional 0.20 0.12 0.12 0.17 0.11 0.24 0.07 0.20 
 

Probability Mass (PM) 

Grid-point 0.30 0.06 0.13 0.11 0.14 0.07 0.08 0.08 

Traditional 0.15 0.05 0.07 0.08 0.07 0.12 0.05 0.10 
 

Distance (D) 

Grid-point 18.2 30.5 16.4 32.9 15.7 37.8 36.9 37.4 

Traditional 28.6 32.0 37.0 22.5 22.9 21.2 54.3 27.9 
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Table D7: Welfare measures for first tows for the Pacific groundfish RUM model with no “Habit” variables  

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

  50-100 Fathom Closure - Grid Model 

Lower Bound 37.9 4.2 11.9 -25.4 40.8 -30.9 27.6 29.3 

Mean 40.7 29.3 13.3 -4.6 54.1 24.0 28.1 30.8 

Upper Bound 43.5 54.4 14.8 16.1 67.4 78.9 28.6 32.3 
 

50-100 Fathom Closure - Traditional Model 

Lower Bound -260.4 -1020.6 -478.2 -2.6 -184.3 -11.4 35.0 14.9 

Mean 209.0 -228.3 -167.3 43.4 -91.3 10.1 36.9 16.1 

Upper Bound 678.4 564.0 143.5 89.5 1.8 31.6 38.7 17.4 
 

200-250 Fathom Closure - Grid Model 

Lower Bound 1.2 3.5 18.4 -78.5 12.8 -42.4 10.1 7.9 

Mean 1.3 16.4 20.6 -13.2 16.8 33.4 10.3 8.3 

Upper Bound 1.3 29.4 22.9 52.1 20.7 109.2 10.5 8.7 
 

200-250 Fathom Closure - Traditional Model 

Lower Bound -32.1 -1171.5 -2364.1 -14.3 -182.7 -28.3 33.0 26.0 

Mean 24.9 -259.4 -826.6 227.8 -89.7 26.0 34.7 28.1 

Upper Bound 81.9 652.6 710.9 470.0 3.2 80.3 36.5 30.3 

 

Table D8: Welfare measures for non-first tows for the Pacific groundfish RUM model with no “Habit” 
variables  

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

  50-100 Fathom Closure - Grid Model 

Lower Bound 6.5 15.2 7.3 -0.1 12.7 8.0 11.1 13.9 

Mean 6.8 16.1 7.9 18.2 13.2 8.6 11.3 14.9 

Upper Bound 7.1 17.1 8.6 36.4 13.6 9.2 11.5 15.9 
 

50-100 Fathom Closure - Traditional Model 

Lower Bound -494.2 13.3 3.6 -0.2 7.1 4.1 11.3 5.6 

Mean -132.0 14.5 3.8 4.8 7.4 4.4 11.8 5.9 

Upper Bound 230.2 15.7 4.0 9.9 7.7 4.6 12.4 6.2 
 

200-250 Fathom Closure - Grid Model 

Lower Bound 0.3 6.9 9.4 1.5 2.9 11.2 4.3 4.6 
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Mean 0.4 7.3 10.1 28.6 3.0 11.9 4.3 4.9 

Upper Bound 0.4 7.6 10.7 55.6 3.1 12.7 4.4 5.2 
 

200-250 Fathom Closure - Traditional Model 

Lower Bound -61.5 15.8 17.3 0.1 7.6 10.8 12.0 8.3 

Mean -16.6 17.2 18.4 26.3 7.9 11.5 12.6 8.6 

Upper Bound 28.4 18.6 19.5 52.6 8.2 12.2 13.2 9.0 
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Table D9: Welfare measures for first tows for the Pacific groundfish mixed logit estimation of RUM 

model with normally distributed random parameters 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

  50-100 Fathom Closure - Grid Model 

Lower Bound 1.5 19.0 -15.2 1.5 -62.9 3.3 -93.2 -6.0 

Mean 29.9 38.6 -5.1 3.2 9.1 20.2 117.4 42.1 

Upper Bound 58.3 58.2 5.0 4.9 81.2 37.1 327.9 90.1 
 

50-100 Fathom Closure - Traditional Model 

Lower Bound -513.6 -64.8 -99.3 -46.5 -37.6 -19.5 -16.1 -16.7 

Mean -135.1 -24.2 -38.6 -15.8 -7.0 -9.2 1.9 24.3 

Upper Bound 243.3 16.4 22.0 14.9 23.6 1.1 19.9 65.2 
 

200-250 Fathom Closure - Grid Model 

Lower Bound 0.0 10.7 -37.9 4.5 0.3 -28.6 -5.3 -7.4 

Mean 0.8 17.3 -12.2 11.9 14.0 1.0 9.3 8.0 

Upper Bound 1.6 23.9 13.5 19.2 27.7 30.5 23.9 23.4 
 

200-250 Fathom Closure - Traditional Model 

Lower Bound -55.4 -52.7 -531.0 -88.9 -49.7 -116.8 -6.4 -28.7 

Mean -17.5 -6.3 -226.1 -33.5 32.6 -40.5 0.4 39.6 

Upper Bound 20.3 40.0 78.8 21.9 115.0 35.7 7.3 107.8 

 

Table D10: Welfare measures for non-first tows for the Pacific groundfish mixed logit estimation of RUM 
model with normally distributed random parameters 

Model Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8 

  50-100 Fathom Closure - Grid Model 

Lower Bound 9.6 10.3 -0.7 2.8 11.2 4.0 7.9 -3.6 

Mean 10.6 13.5 4.5 9.8 14.5 10.2 11.9 6.2 

Upper Bound 11.5 16.7 9.7 16.8 17.8 16.4 15.8 16.1 
 

50-100 Fathom Closure - Traditional Model 

Lower Bound -728.6 7.8 2.0 0.9 -2.0 0.3 10.5 -10.7 

Mean 902.5 14.6 3.0 4.6 5.0 3.4 19.1 20.4 

Upper Bound 2533.7 21.3 4.0 8.4 12.0 6.4 27.8 51.6 
 

200-250 Fathom Closure - Grid Model 

Lower Bound 0.2 4.5 3.1 4.2 2.4 4.7 1.0 1.3 

Mean 0.2 5.7 10.7 14.9 3.1 10.6 3.7 4.8 

Upper Bound 0.2 6.9 18.3 25.7 3.8 16.4 6.5 8.3 
 

200-250 Fathom Closure - Traditional Model 
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Lower Bound -99.3 7.3 10.6 -4.4 -3.7 6.9 13.2 -12.3 

Mean 58.7 23.0 14.1 21.0 6.7 12.1 15.3 24.7 

Upper Bound 216.7 38.7 17.5 46.4 17.1 17.3 17.5 61.7 
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